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Transmission-Line Theory

We need transmission-line theory whenever the length of a line
is significant compared to a wavelength.




2 conductors

4 per-unit-length parameters:

C = capacitance/length [F/m]
L = inductance/length [H/m]
R = resistance/length [(2/m]

G = conductance/length [(/m or S/m]
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C —> O
4 @®® 7T v(zi)
( 0
Az
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v(z,1) GAz = == CAz v(z+Az)
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Note: There are equal and opposite currents on the two conductors.
(We only need to work with the current on the top conductor, since we have chosen to put all of the series elements there.)




0i(z,t)
ot

v(z,t)=v(z+Az,t)+i(z,t)RAz + LAz

ov(z + Az,t)
ot

i(z,t)=i(z+Az,t)+Vv(z+ Az,t) GAz+ CAz



Hence

v(z+Az,t)—v(z,t) _ _Ri(z t)—Lai(Z’t)
Y ;
i(z+Az,t)—i(z,1) _ _Gu(z+Azt)—C
A ;
Now let Az — 0:
w_ =—Ri — 81
Oz 8t
a_ —Gv— C@

Oz ot

ov(z + Az,t)

Ot

“Telegrapher’s

Equations”




To combine these, take the derivative of the first one with
respect to z:

av:—R@—L 0 (81’)
oz’ Oz Oz \ Ot

Switch the order of the

. . derivatives.
:_R&_La(azj —
Oz Ot\ 0z
:—R{—Gv—Ca‘/}—L[—Ga‘}—Caq
ot ot or
Ol ov

—=—-Gv-C—
0z ot



oV _ —R{—Gv—Ca‘}}—L[—Ga‘/—Ca "}
oz ot ot o

Hence, we have:

o'v B
0z’

(RG)V—(RC+LG)@—LC(a "j —0
ot or

The same differential equation also holds for i.

Note: There is no exact solution in the time domain, in the lossy case.



Time-Harmonic Waves: ——>]a)

o'v
oz’

dV
dz’

ot

—(RG)v—(RCJrLG)%—LC(a Vj =0

ot’

|

—(RG)V —(RC+LG) joV —LC(-w*)V =0



TV _(RG)V + jo(RC + LG)V —('LC)V

dz

Note that

RG+ jo(RC+LG)—w’LC=(R+ joL)(G+ joC)

/Z =R+ jolL = seriesimpedance / unitlength
Y = G + jwC = parallel admittance / unit length
dv

Then we can write: =(ZY)V
dz’




Can(Z)
dz’

Define 7/2 =/Y Then

Solution: V(Z):Ae—7z + Be'”

y is called the “propagation constant”.

We have:  y =[(R+ joL)(G + joC)]"

Question: Which sign of the square root is correct?

y'V(z)



1/2

y =[(R+ joL)(G + joC)]

We choose the principal square root.

Principal square root; z = re’

\/;: \/;ejm —1 < 0 < 7 (Note the square-root (“radical’) symbol here.)

Examples:

42 =42 J4=2

, 1+ - 1+
1/2:i_, _1TJ
! (ﬁj Vi=5

¥ =J(R+ joL)(G+ joC) Rey>0

—> Re(x/;)Z()

Hence
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¥ =J(R+ joL)(G + joC)

Denote: Y=+ ],6

/ N\

¥ = propagation constant [l/m] [ = phase constant [rad/m]

o = attenuationcontant [np/m]

a=Rey=>0



R+ jolL

Re

G+ jowC

Re

7 =J(R+ joL)G + jaC)

There are two possible locations for the complex square root:

Im

/4

Re

The principal
square root must

be in the first
quadrant.

a=Rey

Hence:

a>0, >0
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Wave traveling in +z direction:

V(2)=

Ae” = Ade e (y=a+jp)

|

Wave is attenuating as it propagates.

Wave traveling in -z direction:

V()

— Ade'”" = det* et P7 (r=a+jp)

|

Wave is attenuating as it propagates.
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Attenuation in dB/m: V(z) — e %o P

%

out

V.

mn

Attenuationin dB =-20log,,

‘A e‘”)
4

= —20(0.4343)(—052)

=8.686az

=-20log,,

Note: log,,(x)=0.4343 In(x)

Attenuationin dB/m = 8.686«



V(z)=4de” = Ae e " y=a+ jp

V(2) = dehe = A k=

y = Jk,

y = \/(R + joL)(G+ joC)  "propagationconstant"

k. = _j\/(R + joL)(G+ joC) "propagation wavenumber"



Forward travelling wave (a wave traveling in the positive z direction):

V+ (Z) — VO+ e—)/Z — V0+ e—az e_j'BZ

V+(Z, t) — Re {(VO+ o e—jﬂz)eja)t}

=Re {((‘VJ ‘em)e_“z e‘jﬂz)ej“”}

I/O+

N

A

e cos(wt — Bz +¢)

“snapshot” of wave

/\"\;_—,—.%72 ﬂ:%

The wave “repeats” when:

PA, =2n

Hence:
2

g



Let’s track the velocity of a fixed point on the wave (a point of constant
phase), e.g., the crest of the wave.

\ (phase velocity)

Vvi(z,t) = ‘VO+ “* cos(wt — Pz + @)
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Set wt— [z = constant

dz
wo—p—=0
'Bdt
dz _o
dt p

In expanded form:

)
) — _ 0,
p g im{{/R+ joL)(G + joC|

Hence \%




Ve (z) NN>

Assumption: A wave is traveling in the positive z direction.

7 V@

I'(2)
V() =Vye” © 7=t
]O

I"(z)=1e""

(Note: Z, is a number, not a function of z.)

21



Use first Telegrapher’s Equation:

@ =—Ri — 81
Oz 8t

SO

d—V =—RI - jolLl =-ZI
dz

N (z2)=V, e’
I (z)=1;e"

Recall: -~

Hence —7/VJr wrz ——Z[Je_”
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AR/

Iy Jzv

From this we have: Z, =

Use:
Z=R+ joL
. Both are in the first quadrant
Y=G+ joC

= y =~ /Y € first quadrant

= Z,=7Z/~NZY e right-half plane
= ReZ, =20

Z

I:> Z, = 7 (principal square root)



Hence, we have

/Z R+ joL
Loy=4|5 = )
Y G+ joC

ReZ, =20



V( ):V+ TV e
o IP +‘V ‘ J# praz tipz

Wave in +z Q

direction

Wave in -z
direction

In the time domain:
v(z,t) = Re{V(z)ej“”}
Vyle ™ cos(a)t — Pz + ¢+)
+‘V0‘

e cos (a)t +fz+¢ )
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A wave is traveling in the negative z direction.

V= (2) _ o
T O T o

Note:
The reference directions for voltage and current are chosen the
same as for the forward wave.




- 2AVAVAVAL

Most general case: A general superposition of forward and
backward traveling waves:

V(Z) V—I— —7/Z+V— +yz

l(z)—Z1 [V+ TV, e W]
0
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7:a+j,6':\/(R+ja)L)(G+ja)C)

R+ joL
ZO=J Vo

G+ joC

Guided wavelength:

/Izz—ﬂm]

P

Phase velocity:

o
v, =—

[m/s]

Attenuationin dB/m =8.686«
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R=0,G=0

y=a+jB =R+ ij)(gé + jaC)
=ja)\/R

a=0 , =9
SO p
L =wNLC P
R+ joL L 1
Z, = |~ v, =——
GrjoC = “TNC rJLC

(real and independent of freq.)  (independent of freq.)



1
V = —

P JLC

If the medium between the two conductors is lossless and homogeneous
(uniform) and is characterized by (¢, 1), then (proof given later):

LC = ue

|
The speed of light in a dielectric mediumis C, = \F
HE

Hence, we have that: Vp = Cd

and [ =wVLC =w\ue =k=ky\Je 1

In the lossless case the phase velocity does not depend on the frequency, and it
is always equal to the speed of light (in the material).
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y+ (Z) V- (Z) Terminating impedance (load)

U 1(2) i j
V(Z) = V;)Jre—yz + V;)—eﬂ/z * V(z) | 7
N | T 0

Amplitude of voltage wave
propagating in positive z
direction at z = 0.

Amplitude of voltage wave
+ _pt propagating in negative z
V (O) VO direction at z = 0.

Where do we assignz=0 ?
The usual choice is at the load.
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Terminating impedance (load)

t oY — +yz | |
V(z)=Vie” +Ve I(z) : j
o———b—l
") (2,
CanweuseZ:ZO as o——l—lb—, — 7z
a reference plane? zZ=1z | 1 z2=0
V ( ) V+ —72 V— (Z()) — K)—e+7zo
= V()Jr =V (ZO)e+7/Zo — VO_ =) (Zo)e—yzo
Hence
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Terminating impedance (load)

RS N
L) [2

B~

o———b—,_,z
z=0

Compare:

V(z) =) (O)e_” +V" (O)e”Z

V() =V (2)e T 47 ()

This is simply a change of reference plane, from z=0to z = z,.
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Terminating impedance (load)

What is 7(-d) ? | 1(-d) i j
oy d) [z
V(z)=Vye +V e™ | L Z
| | —_ Z
| |
| z=-d I z=0
V(-d)=V, e +V,e
Propagating Propagating
forwards backwards

The current at z =-d is then:

d = distance away from load

ZO ZO (This does not necessarily have to be the length of the entire line.)
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|
|
|
o—+——lb—|
V() 'z
- e——— |
: : — Z
| z=-d 1 z=0 I'(-d) = reflection coefficient at z = -d
lV_ : 1
V(-d)=Vye" +V e =V, e" [1 + —°+e2?d)
Vs
or
% (—d) _ Vo+e;/d (1 n FLe—zyd) I'; = load reflection coefficient
I', = 41
Similarly, A
VOJr yd —2yd —2yd
I(—d)zZ—e (I—FLQ ) F(—d)—FLe
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Z(-d) = impedance seen “looking” towards load at z = -d.

EI(—d)
o—l_l_——b—|

0—_—5—,_,

V(-d) i Z
i z=0

z

Note:
If we are at the

we will call this the
“input impedance”.

beginning of the line,
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At the load (4 = 0):
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1+, e
ZO —2yd
1-T e

Thus,
1+ ?_? e
_I_
Z(-d)=7, —
1_ ZL_ZO e—Zj/d
Z, +Z,



Simplifying, we have:

Hence, we have

1+ ZL_ZO o274
Z,+7, _, ((ZL+ZO)+(ZL—ZO)eWJ
1| Ze=%y | 2 (2,+2))~(2,-2,)e™"
Z, +Z,
(Z,+Z,))e"" +(Z2,-Z,)e™
(Z,+Z,))e"" -(Z,-Z,)e™

Z, cosh(yd )+ Z,sinh(yd
Z,cosh(yd)+Z, sinh(yd

il

Z, +Z,tanh(yd)
Z,+Z, tanh(yd)

J

Z(—d)zZO(



Lossless: 4 z/-l— jB=jp

V(-d)=Vye? (1+T &™)

| AN .
I(-d)=-2e"(1-T ")
Zo Impedance is periodic with period 4,/2:

The tan function repeats when

2jpd
Z(~d)=z,| e B(d,~d)=x
1-T,e?” or
( ) T(dz_dl):ﬂ
Z, + jZ, tan( fBd g
Z(-d)=27,| 220 _
(=) O[ZO+jZLtan(,Bd)] =d,—d, =4,/2

Note: tanh(yd)=tanh(jfBd)= jtan(pd)
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|
|
|
0—*—b—|
:J_r V(-d) E Z,
| | —_— 7
Z(~d) mmmy | z=-d | z=0
/., — 7
1+, e I') = ZL +ZO
Z(—d)ZZO T 2 LT %o
t P 2z
_ Z, +Z,tanh(yd) g_7
- Z,+Z, tanh(yd) o
v, =—
p

y=a+jB=J(R+ joL)G + joC)
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|
|
|
o—+*—lb—|
| V(-d) | Z
| | —_— 7
Z(-d) ‘ | z=—d | z=0
Z, -7
I+ FLe_zj'Bd FL - ZL ZO
Z(—d)ZZO Y L T4
L P 2 2w
(2t () Y
’ Z0+jZLtan(,Bd) D
vp:E:Cd

B=woNLC =w\us =k
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ZL_ZO _

FL: —
ZL-I-ZO \

No reflection from the load

—2yd
Z(—d)zzoci?iw) = Z(—a’):Z0 forany z
L
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Lossless Case

Z(—d)=jZ,tan(pd)

Always imaginary!
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Lossless Case

X

SC

Inductive
A

\/
Capacitive

JX

1/4

1/2

Z(—d)= jZ,tan(pd)

Z(—d)

sC

Note: pd = 27ri

A
4

d/2, te =
(lossless)

S.C. can become an O.C. with a
ﬂg/4 transmission line.
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Lossless Case

l —
T :ZL_ZO : [( d) i
Y Z,+Z
0 v (-d) |
I — [
LZI_ZO/ZL_)1 o—l— Ib > =z
l-I-ZO/ZL Z(_d) - :Z=—d :Z=O
I, =+1
' 1+ j(Z,/Z
I LA A Z(—d):Z()( 4 O/L)tan(ﬂd)
Zy,+ jZ, tan(fd) (ZO/ZL)Jr]tan(,Bd)

Z(-d)=—jZ,cot(pd)

Always imaginary!

J
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Lossless Case

oc

Inductive
A

\/
Capacitive

1/4

1/2

Note: fd = Zﬂi
ﬂ“g
A =2,
d /ﬂg (lossless)

O.C. can become a S.C. with a
ig/4 transmission line.
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We can obtain any reactance that we want from a short or open transmission line.

This is very useful in microwave engineering.

A microwave filter constructed from microstrip line.
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Find the voltage at any point on the line

< [ =
I(z)
+ Ly, n
V., A4 V()
Zin |_>
At the input:

Z, /.., |——

V(_I):VTh(Zm_l_ZTh] i o -+
VTh V(_l) _ Z

in

220002 5 ) ‘
0T 4L /4 )




V(z)=Vye” (14T, e™)  Tu-

I

Incident (forward) wave (not the same as the initial wave from the source!)

At z=-/: 5
V(- =V'e" (1+T, e )=V L
( ) " ( ' ) Th(zin—I_ZThj
/. 1
= V=V, e mp
Z +Z, 1+T,e™
Hence

n

Z. an) [ 14T, €7
V(Z):VTh e\ - 271
Z +7Z, 1+1 e
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Let’s derive an alternative form of the previous result.

14T, %
Start with: Z,=Z(-1)=Z2 L
( ) 0 1_1—*Le—27/l
7 1+FLe_2”
) 0 l_rLe—Zyl Z() (1+FLe—2}’l)
= - =2yl - =2yl =2yl
Z. +Z, 1+T e Z,(1+T ™" )+ Z,, (1-T e ™")
Zo 1 T~ 2y +ZTh
1-T", e

Z,(1+T ™)
(Zy+Z))+T e (2,-2Z,,)

:( Z, j (14T ")

ZTh+ZO 1+T e—2;/l ZO_ZTh
¢ Z., +Z,

2yl
:( Z, j (1+FLe 7)
ZTh+ZO 1_1‘* eZVI(ZTh_ZOJ
L
Z, +Z,
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Hence, we have
z, [ Z 1+T e
Z +Z, \Z,+Z, \1-T' T, e

where T = Zn=% (source reflection coefficient)

Substitute ZTh + ZO

Recall:
Z, s [ 14T, €77
V(Z):VTh € ) - 2yl
ZSt 7 1+T,e

Therefore, we have the following alternative form for the result:

/ —y(1+2) 1+ €+272
V(Z):V”’(Z 7 ]e 7 (1—r1i g2
0 Th s— L
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N
o
.
s

Zy | )| 14 Le™”
Z,+7Z, 1-T e

y,

This term accounts for the multiple (infinite) bounces.

The “initial” voltage wave that would exist if there were no reflections from the load

(we have a semi-infinite transmission line or a matched load). o



+ L, h ]
Vo /() Z0s7 Z,
— |

Wave-bounce method (illustrated for z = -1):

We add up all of the bouncing waves.

1+T,e™" +(T,e ™),

V (_l) =V, [Zo fOZTh J * [(FLQ_M )FS } (FLe_M ) + [<FL€_M )Fs (FLe_M )} X

+...




ZO
Zy+7Z,

V(-1)= VT,{

1+T,e™ + (0™ )T,

+ [(FLe_M T, } (C,e™)+ [(rLe'zﬂ )T, (T e )} r

+...

Group together alternating terms:

Z
CEAr
0 Th

Geometric series:

Zz”=l+z+z2+...= ,
n=0

|

2

14 (0, Lge™ ) +(T,Tge™) +...

+T,e?" [1 +(T,Lye™ )+ (0, g™ )2 +.. }

|

|



Hence

1
} 1-T, e

+T, e !
’ 1-T,T e

V(-)=V,| =20 L+l
"\ z,+z, |1-T,T ™"

This agrees with the previous result (setting z = -/).

ZO
/. +7

0 Th

V(—f):VTh(

or

. . Z C(las 1 F +2yz
Previous (alternative)result: ¥ (z) =7, | =——2— |e 7" . —
ZO+ZTh I—FSFLQ 4

The wave-bounce method is a very tedious method — not recommended.



|
[
[
+ I |
P(z) = power flowing in + z direction : - V(z) : Z,
[ __"_,, — =z
At a distance d from the load: |z S
P(z)=Re{V ()1 (2)} V(2)=Vge™ (1+T,e%)
[+ ]2 [(Z):VO+ —72(1 F +27/z)
:lRe 0 e—2az (1+F e+27z)(1_r* e+27*z) ZO
2 0 i : y=a+jp
- y V+
= lRe 0_6—2052 (1 _ ‘FL ‘2 e+4az )] L 1 RC|: e—2az (l—wLe+2yz F*L€+27/ - ):l
2 Z, 2 Zo

L : Note:
If Z, = real (low-loss transmission line):

| V+ 5 FLe+2yz _er+2y*z
P(z) ~— 1

—2az 2 4az _ a2y 2y N
2 7 e ( ‘F ‘ e ) (please see the note) =I,e (FLe )
: = pure imaginary
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. _|_ I |
Low-loss line - V(z) 1z,
- o b | -
7N | |
1 ‘ 0 -2az 2 gz I 2 I z=0
P(Z) ~ E 7 ( |1" |
0
2 2
+ +
— l‘l/o —2az . 1 V |1- |2 +2az
2 Z, 2 Z,
Power in forwar\a—traveling wave Power in backwa\rfd—traveling wave Note:
For a very lossy
line, the total

Lossless line (a=0)

(1-Ir.f)

V+

0

power is not the
difference of the
two individual
powers.
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Z -7 EZL + jZ,, tan fBd

Z, + jZ, tan Bd
A 224 7
A=l =0 42

SO

J

Lossless line

—
ZOT ZL
() ’—I

Zin ‘

d=2,/4

Matching condition
Fin — O — Zin = ZO
ZZ
= Z,=—"L
ZL

(This requires Z, to be real.)

Hence

Lor = \ Lo,
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Example

Match a 100 Q load to a 50 Q transmission line at a given frequency.

A = =A
Bk ke e
Lossless line P C
) =—
/
500 Zy Z, =100[Q]
A, /4

Note: f =V LC =w\Jus =k

Z, =100 x50
=70.7 Z,, =70.70



Lossless Case

V(z)=V e (1 + FLe+2jﬂZ)

=V, e’ (1 + |FL|ej¢Le+2jﬂZ)

1+ FL|ej¢Le”2ﬂZ

:_ V(z) : Z,

- ers——— 5 |
| | - Z
|z : z=0

—> Z

Az=4/2 |

1 U
< > z=0

2fAz=27 = Az=1,/2

Note: The voltage repeats every 4,. The magnitude repeats every 4, /2.

Note: The voltage changes by a minus sign after 4,/2.
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V

max

Voltage Standing Wave Ratio (VSWR) = ;
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At high frequency, discontinuity effects can become important.

Transmitted
—

Incidy
e

Reflected

The simple TL model does not account for the bend.

ZTh

R
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At high frequency, radiation effects can also become important.

We want energy to travel from the generator to the load, without radiating.

ZTh
e
S Y,

When will radiation occur?

This is explored next.
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Coaxial Cable

The coaxial cable is a perfectly shielded system — there is never any radiation at
any frequency, as long as the metal thickness is large compared with a skin depth.

The fields are confined
to the region between
the two conductors.
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The twin lead is an open type of transmission
line — the fields extend out to infinity.

N

— @ e @ | The extended fields may cause interference

with nearby objects.
J \__/ \\ (This may be improved by using “twisted pair”.)

Having fields that extend to infinity is not the same thing as having radiation, however!
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The infinite twin lead will not radiate by itself, regardless of how far
apart the lines are (this is true for any transmission line).

@mm Reflected S
mmm) Incident \\/’ - \;9
) ) /
| ; —+ @ —@
)

No attenuation on an infinite lossless line

The incident and reflected waves represent an exact solution to
Maxwell’s equations on the infinite line, at any frequency.
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A discontinuity on the twin lead will cause radiation to occur.

Incident wave _
O Pipe ey
(] ) )
Obstacle | h
0 ‘ )
Reflected wave
= -
Note:
Radiation effects usually increase as Incident wave /
the frequency increases.
—p
o Y >
Bend h Bend
— N\

Reflected wave
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Limitations of Transmission-Line Theory (cont.)

To reduce radiation effects of the twin lead at discontinuities:

1) Reduce the separation distance % (keep & << A).
2) Twist the lines (twisted pair).

CAT 5 cable
(twisted pair)
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