# ECE 5317-6351 

## Fall 2019

Prof. David R. Jackson Dept. of ECE



Notes 20
Power Dividers and Circulators


* A power divider is used to split a signal.
* A coupler is used to combine a signal.


These are examples of a three-port network.

General 3-port network:

$$
[S]=\left(\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right)
$$

## Three Port Networks (cont.)

If all three ports are matched, and the device is reciprocal and lossless, we have:

$$
[S]=\left(\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right) \quad \text { (The } S \text { matrix is unitary.) }
$$

(There are three distinct values.)

Such a device is not physically possible! (Please see the next slide.)

Conclusion: If we want a match at all ports, we have to have a lossy device.

Power Dividers and Couplers (cont.)

$$
[S]=\left(\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & 0 & S_{23} \\
S_{13} & S_{23} & 0
\end{array}\right)
$$

Lossless, reciprocal, and matched at all ports is not physically possible.

Lossless $\Rightarrow[S]$ is unitary
Hence:


$$
\left.\begin{array}{l}
\left|S_{12}\right|^{2}+\left|S_{13}\right|^{2}=1 \\
\left|S_{12}\right|^{2}+\left|S_{23}\right|^{2}=1 \\
\left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}=1
\end{array}\right] \quad \text { These cannot all be satisfied. }
$$

$$
S_{13} S_{23}^{*}=0
$$

$$
S_{12} S_{23}^{*}=0
$$

At least 2 of $S_{13}, S_{12}, S_{23}$ must be zero.

$$
S_{12} S_{13}^{*}=0
$$

(If only one is zero (or none is zero), we cannot satisfy all three.)

## Power Dividers

## T-Junction: A lossless divider

$$
Y_{\mathrm{in}_{1}}=\frac{1}{Z_{02}}+\frac{1}{Z_{03}}
$$



To match: $Z_{01}=Z_{\mathrm{in}_{1}}=\frac{1}{Y_{\mathrm{in}_{1}}}=Z_{02} \| Z_{03}=\frac{Z_{02} Z_{03}}{Z_{02}+Z_{03}}$
We then have: $Y_{\mathrm{in}_{3}}=\frac{1}{Z_{01}}+\frac{1}{Z_{02}}=\frac{Z_{02}+Z_{03}}{Z_{02} Z_{03}}+\frac{1}{Z_{02}}=\frac{Z_{02}+2 Z_{03}}{Z_{02} Z_{03}}=\frac{1}{Z_{03}}\left(\frac{Z_{02}+2 Z_{03}}{Z_{02}}\right)$
Thus, $Y_{\mathrm{in}_{3}} \neq \frac{1}{Z_{03}} \quad$ Similarly, $Y_{\mathrm{in}_{2}} \neq \frac{1}{Z_{02}}$

If we match at port 1, we cannot match at the other ports!

Note:
Matching at ports 2 and 3 would be helpful when output lines 2 and 3 are not matched to their loads.

## Power Dividers (cont.)

Assuming port 1 matched:

$$
\begin{gathered}
Z_{01}=\frac{Z_{02} Z_{03}}{Z_{02}+Z_{03}} \\
P_{\text {in }_{1}}=\frac{1}{2} \frac{\left|V_{1}\right|^{2}}{Z_{01}} \\
P_{\text {out }_{2}}=\frac{1}{2} \frac{\left|V_{1}\right|^{2}}{Z_{02}}=\frac{Z_{01}}{Z_{02}} P_{\mathrm{in}_{1}} \\
P_{\text {out }_{3}}=\frac{1}{2} \frac{\left|V_{1}\right|^{2}}{Z_{03}}=\frac{Z_{01}}{Z_{03}} P_{\mathrm{in}_{1}}
\end{gathered}
$$



We can design the splitter to control the powers going into the two output lines.

## Power Dividers (cont.)

Examine the reflection at each port $\left(S_{i i}\right)$ :

$$
\begin{aligned}
S_{11} & =\left.\frac{V_{1}^{-} / \sqrt{Z_{01}}}{V_{1}^{+} / \sqrt{Z_{01}}}\right|_{a_{2}=a_{3}=0}=\left.\frac{V_{1}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=0} \\
& \left.=\frac{Z_{\text {in } 1}-Z_{01}}{Z_{\text {in } 1}+Z_{01}}=\frac{Z_{02} \mid Z_{03}-Z_{01}}{Z_{02} \| Z_{03}+Z_{01}} \text { (zero if port 1is matched }\right)
\end{aligned}
$$

Note: A match on port 1 requires:

$$
\begin{array}{rlr}
S_{22} & =\left.\frac{V_{2}^{-}}{V_{2}^{+}}\right|_{a_{1}=a_{3}=0} & S_{33}=\left.\frac{V_{3}^{-}}{V_{3}^{+}}\right|_{a_{1}=a_{2}=0} \\
& =\frac{Z_{01} \| Z_{03}-Z_{02}}{Z_{01} \| Z_{03}+Z_{02}} & =\frac{Z_{01} \| Z_{02}-Z_{03}}{Z_{01} \| Z_{02}+Z_{03}}
\end{array}
$$

$$
Z_{01}<Z_{02}, \quad Z_{01}<Z_{03}
$$

(The two output lines combine in parallel.)

The first term in the numerators must be less than the second term. $\Rightarrow S_{22} \neq 0, \quad S_{33} \neq 0$

## Power Dividers (cont.)

Also, we have:
$S_{21}=\left.\frac{\frac{V_{2}^{-}}{\sqrt{Z_{02}}}}{\frac{V_{1}^{+}}{\sqrt{Z_{01}}}}\right|_{a_{2}=a_{3}=0}=\frac{V_{2}^{-}}{V_{1}^{+}} \sqrt{\frac{Z_{01}}{Z_{02}}}$

Also

$$
V_{1}=V_{1}^{+}\left(1+S_{11}\right) \Rightarrow V_{1} / V_{1}^{+}=\left(1+S_{11}\right)
$$

Hence

$$
S_{21}=\left(1+S_{11}\right) \sqrt{\frac{Z_{01}}{Z_{02}}}=S_{12}
$$



Similarly:

$$
S_{31}=\left(1+S_{11}\right) \sqrt{\frac{Z_{01}}{Z_{03}}}=S_{13}
$$

$$
S_{32}=S_{23}=\left(1+S_{22}\right) \sqrt{\frac{Z_{02}}{Z_{03}}}
$$

If port 1 is matched: $\quad Z_{01}=\frac{Z_{02} Z_{03}}{Z_{02}+Z_{03}}$

$$
\Rightarrow S_{11}=0 ; \quad S_{22}=\frac{Z_{01} \| Z_{03}-Z_{02}}{Z_{01} \| Z_{03}+Z_{02}} ; \quad S_{33}=\frac{Z_{01} \| Z_{02}-Z_{03}}{Z_{01} \| Z_{02}+Z_{03}}
$$

$$
S_{21}=S_{12}=\left(1+S_{11}\right) \sqrt{\frac{Z_{01}}{Z_{02}}}=\sqrt{\frac{Z_{01}}{Z_{02}}}=\sqrt{\frac{Z_{03}}{Z_{02}+Z_{03}}}
$$

$$
S_{31}=S_{13}=\left(1+S_{11}\right) \sqrt{\frac{Z_{01}}{Z_{03}}}=\sqrt{\frac{Z_{01}}{Z_{03}}}=\sqrt{\frac{Z_{02}}{Z_{02}+Z_{03}}}
$$

$$
[S]=\left(\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{12} & S_{22} & S_{23} \\
S_{13} & S_{23} & S_{33}
\end{array}\right)
$$

From last slide: $\quad S_{32}=S_{23}=\left(1+S_{22}\right) \sqrt{\frac{Z_{02}}{Z_{03}}}$
Only $S_{11}=0$


The output ports 2 and 3 are not isolated.

## Summary

$$
\begin{gathered}
Z_{01}=\frac{Z_{02} Z_{03}}{Z_{02}+Z_{03}} \\
S_{11}=0 ; \quad S_{22}=\frac{Z_{01} \| Z_{03}-Z_{02}}{Z_{01} \| Z_{03}+Z_{02}} ; \quad S_{33}=\frac{Z_{01} \| Z_{02}-Z_{03}}{Z_{01} \| Z_{02}+Z_{03}}
\end{gathered}
$$

$$
S_{21}=S_{12}=\sqrt{\frac{Z_{03}}{Z_{02}+Z_{03}}}
$$

$$
S_{31}=S_{13}=\sqrt{\frac{Z_{02}}{Z_{02}+Z_{03}}}
$$

$$
S_{32}=S_{23}=\left(1+S_{22}\right) \sqrt{\frac{Z_{02}}{Z_{03}}}
$$

- The input port is matched, but not the output ports.
- The output ports are not isolated.


Waves reflected from devices on ports 2 and 3 with cause interference with the other devices.

## Power Dividers (cont.)

## Example: Microstrip T-junction power divider

$$
\begin{aligned}
& S_{11}=0 \\
& S_{22}=S_{33}=-\frac{1}{2} \\
& S_{21}=S_{12}=\sqrt{\frac{1}{2}} \\
& S_{31}=S_{13}=\sqrt{\frac{1}{2}} \\
& S_{32}=S_{23}=\frac{1}{2}
\end{aligned}
$$



## Note:

Quarter-wave transformers could be put on the output lines to bring the final output lines back to 50 [ $\Omega$ ].

## Power Dividers (cont.)

The matched power divider also works as a matched power combiner.

$$
\begin{array}{ll|l}
S_{11}=0 \\
S_{22}=S_{33}=-\frac{1}{2} & Z_{01}=50[\Omega]
\end{array} \quad \begin{aligned}
& Z_{02}=100[\Omega] \\
& S_{21}=S_{12}=\sqrt{\frac{1}{2}}
\end{aligned} \quad \begin{aligned}
& Z_{011}\left\|Z_{02}=Z_{011}\right\| Z
\end{aligned}
$$

## Wilkinson Power Divider

## Equal-split (3 dB) power divider

(The Wilkenson can also be designed to have an unequal split.)

- All ports matched ( $S_{11}=S_{22}=S_{33}=0$ )
- Output ports are isolated $\left(S_{23}=S_{32}=0\right)$


Note: No power is lost in going from port 1 to ports 2 and 3 :

$$
\left|S_{21}\right|^{2}=\left|S_{31}\right|^{2}=\frac{1}{2}
$$

$$
[S]=\frac{-j}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

The derivation is in the appendix.
Obviously not unitary

## Wilkinson Power Divider (cont.)

$$
[S]=\frac{-j}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Microstrip layout


$$
\begin{gathered}
S_{11}=S_{22}=S_{33}=0 \\
S_{32}=S_{23}=0
\end{gathered}
$$

All three ports are matched, and the output ports are isolated.

## Wilkinson Power Divider (cont.)

$$
[S]=\frac{-j}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$



$$
\begin{aligned}
& S_{21}=S_{31}=\frac{-j}{\sqrt{2}} \\
& S_{12}=S_{13}=\frac{-j}{\sqrt{2}}
\end{aligned}
$$

- When a wave is incident from port 1, half of the total incident power gets transmitted to each output port (no loss of power).
- When a wave is incident from port 2 or port 3 , half of the power gets transmitted to port 1 and half gets absorbed by the resistor, but nothing gets through to the other output port (the two output ports are isolated from each other).


## Wilkinson Power Divider (cont.)

Example: Microstrip Wilkinson power divider


## Wilkinson Power Divider (cont.)

Figure 7.15 of Pozar
Photograph of a four-way corporate power divider network using three microstrip Wilkinson power dividers. Note the isolation chip resistors.

Courtesy of M.D. Abouzahra, MIT Lincoln Laboratory.


## Wilkinson Power Divider (cont.)



Figure 7.12 of Pozar
Frequency response of an equal-split Wilkinson power divider. Port 1 is the input port; ports 2 and 3 are the output ports.

## Cìrculators

Now consider a 3-port network that is non-reciprocal, with all ports matched, and is lossless:

$$
\Rightarrow[S]=\left(\begin{array}{ccc}
0 & S_{12} & S_{13} \\
S_{21} & 0 & S_{23} \\
S_{31} & S_{32} & 0
\end{array}\right) \quad S_{i j} \neq S_{j i}
$$

"Circulator"


These equations will be satisfied if:
(There are six distinct values.)

Lossless $\Rightarrow\left|S_{21}\right|^{2}+\left|S_{31}\right|^{2}=1$
(1) $S_{12}=S_{23}=S_{31}=0$
$\left|S_{21}\right|=\left|S_{32}\right|=\left|S_{13}\right|=1$
(2) or

$$
\begin{aligned}
& S_{21}=S_{32}=S_{13}=0 \\
& \left|S_{12}\right|=\left|S_{23}\right|=\left|S_{31}\right|=1
\end{aligned}
$$

(unitary)

$$
\begin{aligned}
& \left|S_{12}\right|^{2}+\left|S_{32}\right|^{2}=1 \\
& \left|S_{13}\right|^{2}+\left|S_{23}\right|^{2}=1 \\
& S_{31} S_{32}^{*}=0 \\
& S_{21} S_{23}^{*}=0 \\
& S_{12} S_{13}^{*}=0
\end{aligned}
$$

## Circulators (cont.)

$$
\text { (1) } \quad[S]=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Note: We have assumed here that the phases of all the $S$ parameters are zero.
(2)

$$
[S]=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

A wave goes in one port and comes out from the adjacent port!

Clockwise (LH) circulator


Counter-clockwise (RH) circulator

## Circulators (cont.)

## An example of a circulator:



```
Frequency: 0.698-0.96GHz
VSWR: <1.3
Isolation : >18 dB
Power: 1000 W
Insertion loss: <0.35 dB
Length: }1.75\mathrm{ in
Width: }2\mathrm{ in
Height: }1.02\mathrm{ in
Temperature range: -20-70 deg C
Price: $439.94
```

Circulators can be made using biased ferrite materials.

## Circulators (cont.)

## Application: Wireless system



* The same antenna can be used for transmit and receive.
* The transmit and receive frequencies can even be the same.

Note: A circulator used this way is often called a duplexer.

## Duplexer

A duplexer:


A diplexer) is a type of filter that combines or splits two different frequencies ( $f_{1}$ and $f_{2}$ ).


Triplexer: three frequencies
Multiplexer: multiple frequencies

## Diplexer (cont.)

An example of a diplexer:


## Diplexer (cont.)

Note: A diplexer can be used to transmit and receive two different channels with the same antenna (as with a duplexer), if the frequencies are separated enough.


## Note:

This requires a high isolation between the transmit and receive ports, to avoid interference.

## Isolator

An isolator is a two-port device that is nonreciprocal:

$$
[S]=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

* A wave coming in on port 1 goes through to port 2.
$\star$ A wave coming in on port 2 gets absorbed (does not go to port 1 ).


```
Frequency: 0.8-1 GHz
VSWR: }1.2
Isolation: 20 dB
Power: 2 W
Insertion loss: <0.4 dB
Length: }1.25\mathrm{ in
Width: }2\mathrm{ in
Height: 0.75 in
Temperature range: -20 - 60 deg C
Price: $279.82
```


## Cìrculator as Isolator

A circulator can also be used to make an isolator:


Matched load

* A signal from the input port goes to the output port.
* A signal from the output port does not get to the input port.


## Circulator as Isolator (cont.)

A waveguide-based circulator with a matched load at port 3, acting as an isolator


## The analysis of the Wilkinson power divider is given here.

* Even/odd mode analysis is used to analyze the Wilkinson power divider.
* This requires two separate analyzes (even and odd).
* Each analysis involves only a two-port device instead of a three-port device.


## Appendix (cont.)

- Even and odd analysis is used to analyze the structure when port 2 is excited.
$\Rightarrow$ To determine $\quad S_{22}, S_{32}$
- Only even analysis is needed to analyze the structure when port 1 is excited.
$\Rightarrow$ To determine $\quad S_{11}, S_{21}$

The other five components of the $S$ matrix can be found by using physical symmetry and reciprocity (the symmetry of the $S$ matrix).

## Appendix (cont.)



Split structure along plane of symmetry (POS)
Even $\Rightarrow$ voltage even about POS $\Rightarrow$ place OC along POS
Odd $\Rightarrow$ voltage odd about POS $\Rightarrow$ place SC along POS

## Appendix (cont.)



How do you split a transmission line? (This is needed for the even case.)

$$
\text { Top view } \quad I / 2 \quad \swarrow Z_{0}
$$

Voltage is the same for each half of line ( $V$ ) Current is halved for each half of line (I/2)

$Z_{0}$ microstrip line

$$
\Rightarrow Z_{0}^{h}=\frac{V}{I / 2}=2 Z_{0}
$$

## Appendix (cont.)

## Port 2 Excitation "even" problem Overview

$$
V_{2}^{e}
$$

Ports 2 and 3 are excited in phase.

## Note:

The $2 Z_{0}$ resistor has been split into two $Z_{0}$ resistors in series.

$$
\begin{aligned}
\Rightarrow S_{22}^{e}, & S_{32}^{e} \\
S_{22}^{e} & \equiv \frac{V^{-e}}{V^{+}} \\
S_{32}^{e} & \equiv \frac{V^{-e}}{V^{+}}=S_{22}^{e}
\end{aligned}
$$

Note: $V_{3}^{e}=V_{2}^{e}$

## Appendix (cont.)

## Port 2 Excitation

"odd" problem
Overview


Ports 2 and 3 are excited $180^{\circ}$ out of phase.


$$
\Rightarrow S_{22}^{o}, S_{32}^{o}
$$

$$
\begin{aligned}
& S_{22}^{o} \equiv \frac{V^{-o}}{V^{+}} \\
& S_{32}^{o} \equiv \frac{-V^{-o}}{V^{+}}=-S_{22}^{o}
\end{aligned}
$$

Note: $V_{1}^{o}=0, V_{3}^{o}=-V_{2}^{o}$

## Appendix (cont.)

## Port 2 Excitation

 "even" problem Analysis$$
\begin{array}{lrr}
Z_{\mathrm{in} 2}^{e}=\frac{\left(\sqrt{2} Z_{0}\right)^{2}}{2 Z_{0}}=Z_{0} & 2 Z_{0} & +V_{1}^{e}
\end{array} \text { OC } \begin{array}{lr}
\text { Recall: } \\
\Rightarrow S_{22}^{e}=\frac{Z_{\text {in } 2}^{e}-Z_{0}}{Z_{\text {in } 2}^{e}+Z_{0}}=0 & Z_{\text {in }}=\frac{Z_{T}^{2}}{Z_{L}}
\end{array}
$$


(quarter-wave transformer)
Also, by physical symmetry: $S_{33}^{e}=S_{22}^{e}=0$
Also, in the even case: $S_{32}^{e}=S_{22}^{e} \Rightarrow S_{32}^{e}=0$

## Appendix (cont.)



Also, by physical symmetry: $S_{33}^{0}=S_{22}^{o}=0$
Also, in the odd case: $S_{32}^{o}=-S_{22}^{o} \Rightarrow S_{32}^{o}=0$

## Appendix (cont.)

We now add the results from the even and odd cases together:

$$
\begin{aligned}
& S_{22}=\left.\frac{V_{2}^{-}}{V_{2}^{+}}\right|_{a_{1}=a_{3}=0}= \frac{V^{-e}+V^{-o}}{V^{+}+V^{+}}=\frac{V^{-e}+V^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{22}^{e}+S_{22}^{o}\right)=\frac{1}{2}(0+0)=0 \\
& \Rightarrow S_{33}=0 \text { (by symmetry) } \\
& S_{32}=\left.\frac{V_{3}^{-}}{V_{2}^{+}}\right|_{a_{1}=a_{3}=0}=\frac{V^{-e}-V^{-o}}{V^{+}+V^{+}}=\frac{V^{-e}-V^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{32}^{e}-S_{32}^{o}\right)=\frac{1}{2}(0-0)=0 \\
& \Rightarrow S_{23}=0 \text { (by reciprocity) }
\end{aligned}
$$

In summary, for port 2 excitation, we have:

## Note:

Since all ports have the same $Z_{0}$, we ignore the normalizing factor $\sqrt{ } Z_{0}$ in the $S$ parameter definition.

$$
\begin{aligned}
& S_{22}=0 \\
& S_{33}=0 \\
& S_{32}=S_{23}=0
\end{aligned}
$$

## Appendix (cont.)

## Port 1 Excitation

"even" problem
Overview
$\Rightarrow S_{11}^{e}, S_{21}^{e}$


When port 1 is excited, the response, by symmetry, is even. (Hence, the total voltages are the same as the even voltages.)

## Appendix (cont.)

## Port 1 Excitation <br> "even" problem <br> Analysis

Top view


$$
\begin{aligned}
& I_{1}^{e}=I_{1} / 2 \\
& V_{1}^{e}=V_{1}
\end{aligned}
$$



## Appendix (cont.)

$$
\begin{aligned}
& \begin{array}{l}
\text { Port } 1 \text { Excitation } \\
\text { "even" problem } \\
\text { Analysis (cont.) }
\end{array} \\
& \begin{array}{ll}
=\frac{\left(\sqrt{2} Z_{0}\right)^{2}}{Z_{0}}=2 Z_{0} & \text { Port } 1
\end{array} \\
& S_{11}^{e}=\frac{Z_{\text {in }}^{e}-2 Z_{0}}{Z_{\mathrm{in} 1}^{e}+2 Z_{0}}=0
\end{aligned}
$$

$$
S_{11}=\left.\frac{V_{1}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=0}=\left.\frac{V_{1}^{-e}}{V_{1}^{+e}}\right|_{a_{2}=0}=S_{11}^{e}=0 \quad \begin{array}{cc}
\text { Hence } \\
S_{11}=0
\end{array}
$$

## Appendix (cont.)

## Port 1 Excitation

"even" problem
Analysis (cont.)

$$
S_{21}=\left.\frac{V_{2}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=0}=\left.\frac{V_{2}^{-e}}{V_{1}^{+e}}\right|_{a_{2}=a_{3}=0}=S_{21}^{e}
$$



$$
V_{2}^{-e}=V_{2}^{e}
$$

Along $\lambda_{g} / 4$ wave transformer:

$$
V_{1}^{e}=V_{1}^{+e}\left(1+\mathscr{S}_{11}^{\prime}\right)=V_{1}^{+e}
$$

$$
V_{T}^{e}(z)=V_{0}^{+} e^{-j \beta z}\left(1+\Gamma e^{+j 2 \beta z}\right)
$$

$$
\Rightarrow S_{21}^{e}=\frac{V_{2}^{-e}}{V_{1}^{+e}}=\frac{V_{2}^{e}}{V_{1}^{e}}=-j \frac{(1+\Gamma)}{(1-\Gamma)}=-j \frac{2}{2 \sqrt{2}}
$$

$$
z=\text { distance from port } 2
$$

$$
\Rightarrow \quad S_{21}=\frac{-j}{\sqrt{2}}=S_{12}
$$

(symmetry of S matrix)

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
V_{2}^{e}=V_{T}^{e}(0)=V_{0}^{+}(1+\Gamma) \\
V_{1}^{e}=V_{T}^{e}\left(-\lambda_{g} / 4\right)=V_{0}^{+} j(1-\Gamma)
\end{array}\right. \\
\Gamma=\frac{Z_{0}-\sqrt{2} Z_{0}}{Z_{0}+\sqrt{2} Z_{0}}=\frac{1-\sqrt{2}}{1+\sqrt{2}} \\
1+\Gamma=\frac{2}{1+\sqrt{2}} \quad 1-\Gamma=\frac{2 \sqrt{2}}{1+\sqrt{2}}
\end{array}\right.
$$

## Appendix (cont.)

For the other two components:
By physical symmetry: $\quad S_{31}=S_{21}=\frac{-j}{\sqrt{2}}$
By reciprocity (symmetry of $S$ matrix): $S_{13}=S_{31}=\frac{-j}{\sqrt{2}}$

We then have the final $S$ matrix:

$$
[S]=\frac{-j}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

