ECE 5317-6351

Fall 2019

Prof. David R. Jackson
Dept. of ECE

Notes 21
 Quadrature Coupler and Rat-Race Coupler

Quadrature $\left(90^{\circ}\right)$ Coupler

"A quadrature coupler is one in which the input is split into two signals (usually with a goal of equal magnitudes) that are 90 degrees apart in phase. Types of quadrature couplers include branchline couplers (also known as quadrature hybrid* couplers), Lange couplers and overlay couplers."

Taken from "Microwaves 101"

http://www.microwaves101.com/encyclopedia/Quadrature_couplers.cfm

This coupler is very useful for obtaining circular polarization: There is a 90° phase difference between ports 2 and 3.

Note:

The term "hybrid" denotes the fact that there is an equal
(3 dB) power split to the output ports.

Quadrature Coupler (cont.)

- The quadrature hybrid is a lossless 4-port (the S matrix is unitary).
- All four ports are matched.
- The device is reciprocal (the S matrix is symmetric.)
- Port 4 is isolated from port 1 , and ports 2 and 3 are isolated from each other.

Quadrature Coupler (cont.)

The quadrature coupler is usually used as a splitter:

Note: A matched load is usually placed on port 4.

- The signal from port 1 splits evenly between ports 2 and 3 , with a 90° phase difference.

$$
S_{21}=j S_{31} \quad \text { Can be used to produce right-handed circular polarization. }
$$

- The signal from port 4 splits evenly between ports 2 and 3 , with a -90° phase difference.
$S_{24}=-j S_{34} \quad$ Can be used to produce left-handed circular polarization.

Quadrature Coupler (cont.)

Branch-Line Coupler

A microstrip realization of a quadrature hybrid (branch-line coupler) is shown here.

Notes:

- We only need to study what happens when we excite port 1 , since the structure is physically symmetric.
- We use even/odd mode analysis (exciting ports 1 and 4) to figure out what happens when we excite port 1.

An analysis of the branch-line coupler is given in the Appendix.

Quadrature Coupler (cont.)

Summary

$$
[S]=\frac{-1}{\sqrt{2}}\left[\begin{array}{llll}
0 & j & 1 & 0 \\
j & 0 & 0 & 1 \\
1 & 0 & 0 & j \\
0 & 1 & j & 0
\end{array}\right]
$$

The input power to port 1 divides evenly between ports 2 and 3 , with ports 2 and 3 being 90° out of phase.

Note: A matched load is usually placed on port 4.

Quadrature Coupler (cont.)

A coupled-line coupler is one that uses coupled lines (microstrip, stripline) with no direct connection between all of the ports.

Please see the Pozar book for more details.

This coupler has a 90° phase difference between the output ports (ports 2 and 3), and can be used to obtain an equal (-3 dB) power split or another split ratio.

Quadrature Coupler (cont.)

Circularly-polarized microstrip antennas can be fed with a 90° coupler.

One feed port produces RHCP, the other feed port produced LHCP.

Note: This is a better way (higher bandwidth) to get CP than with a simple 90° delay line.

Rat-Race Ring Coupler (180° Coupler)

"Applications of rat-race couplers are numerous, and include mixers and phase shifters. The rat-race gets its name from its circular shape, shown below."

Taken from "Microwaves 101"
http://www.microwaves101.com/encyclopedia/ratrace_couplers.cfm

Photograph of a microstrip ring coupler
Courtesy of M. D. Abouzahra, MIT
Lincoln Laboratory

Rat-Race Coupler (cont.)

$$
[S]=\frac{-j}{\sqrt{2}}\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

- The rat race is a lossless 4-port (the S matrix is unitary).
- All four ports are matched.
- The device is reciprocal (the S matrix is symmetric).
- Port 4 is isolated from port 1, and ports 2 and 3 are isolated from each other.

Rat-Race Coupler (cont.)

The rat race can be used as a splitter:

Note: A matched load is usually placed on port 4.

- The signal from the "sum port" Σ (port 1) splits evenly between ports 2 and 3 , in phase. This could be used as a power splitter (alternative to Wilkinson).

$$
S_{21}=S_{31}
$$

- The signal from the "difference port" Δ (port 4) splits evenly between ports 1 and $2,180^{\circ}$ out of phase. This could be used as a balun.

$$
S_{24}=-S_{34}
$$

Rat-Race Coupler (cont.)

The rat race can be used as a combiner:

- The signal from the sum port Σ (port 1) is the sum of the input signals 1 and 2.

$$
S_{12}=S_{13}
$$

- The signal from the difference port Δ (port 4) is the difference of the input signals 1 and 2.
$S_{42}=-S_{43}$

Rat-Race Coupler (cont.)

A microstrip realization is shown here.

$$
\Sigma\left(1 z_{0}\right.
$$

An analysis of the rat-race coupler is given in the Appendix.

Magic T

A waveguide realization of a 180° coupler is shown here, called a "Magic T."

"Magic T"

IEEE Microwave Theory and Techniques Society

$$
[S]=\frac{-j}{\sqrt{2}}\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Note the logo!

Monopulse Radar

Rat-Race couplers are often used in monpulse radar.

Four antennas

$$
\Sigma=A+B+C+D
$$

$$
\Sigma=A+B+C+D
$$

$\Delta_{\mathrm{AZ}}=(B+C)-(A+D)$
$\Delta_{\mathrm{EL}}=(C+D)-(B+A)$

Δ

Monopulse Radar (cont.)

The difference signals are used to determine the azimuth and elevation of the target.

$$
\begin{aligned}
A-B & =1-e^{-j \Delta \phi} \\
& =e^{-j \Delta \phi / 2}\left(e^{+j \Delta \phi / 2}-e^{-j \Delta \phi / 2}\right) \\
& =e^{-j \Delta \phi / 2}(2 j \sin (\Delta \phi / 2))
\end{aligned}
$$

The difference between the two antenna signals maps into the phase difference $\Delta \phi$, which maps into the angle θ.

Appendix A

Here we analyze the quadrature coupler.

Appendix A (cont.)

Port 1 Excitation "odd" problem

Input admittance of short-circuited stub:

$$
\begin{aligned}
Y_{s} & =-j Y_{0} \cot \left(\beta_{s} l_{s}\right) \\
& =-j Y_{0} \cot (\pi / 4) \\
& =-j Y_{0}
\end{aligned}
$$

Appendix A (cont.)

Consider the general case:

$$
Y_{s}= \pm j Y_{0}\binom{+ \text { for even }}{- \text { for odd }}
$$

Shunt load on line

Quarter-wave line

$$
\text { Here: } \begin{array}{cl}
& Z_{0}^{\text {line }}=Z_{0} / \sqrt{2} \\
& \beta \ell=\pi / 2
\end{array}
$$

$\Rightarrow[A B C D]=[A B C D]_{Y}[A B C D]_{\frac{\lambda}{4}}[A B C D]_{Y}$

Appendix A (cont.)

Hence we have:

$$
\begin{aligned}
{[A B C D] } & =\left[\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{j Z_{0}}{\sqrt{2}} \\
\frac{j \sqrt{2}}{Z_{0}} & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right]\left[\begin{array}{cc}
\frac{j Z_{0} Y}{\sqrt{2}} & \frac{j Z_{0}}{\sqrt{2}} \\
\frac{j \sqrt{2}}{Z_{0}} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{j Z_{0} Y}{\sqrt{2}} & \frac{j Z_{0}}{\sqrt{2}} \\
\frac{j Z_{0} Y^{2}}{\sqrt{2}}+\frac{j \sqrt{2}}{Z_{0}} & \frac{j Z_{0} Y}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

$$
Y= \pm j Y_{0}= \pm \frac{j}{Z_{0}}\binom{+ \text { for even }}{- \text { for odd }}
$$

Appendix A (cont.)

Continuing with the algebra, we have:

$$
\begin{aligned}
{[A B C D] } & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
j Z_{0}\left(\pm \frac{j}{Z_{0}}\right) & j Z_{0} \\
j Z_{0}\left(\pm \frac{j}{Z_{0}}\right)^{2}+\frac{j 2}{Z_{0}} & j Z_{0}\left(\pm \frac{j}{Z_{0}}\right)
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
j(\pm j) & j Z_{0} \\
-j\left(\frac{1}{Z_{0}}\right)+\frac{j 2}{Z_{0}} & j(\pm j)
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mp 1 & j Z_{0} \\
j\left(\frac{1}{Z_{0}}\right) & \mp 1
\end{array}\right]
\end{aligned}
$$

Appendix A (cont.)

Hence we have:

$$
[A B C D]_{0}^{e}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mp 1 & j Z_{0} \\
j\left(\frac{1}{Z_{0}}\right) & \mp 1
\end{array}\right]
$$

Convert this to S parameters (use Table 4.2 in Pozar):

$$
[S]_{0}=\left[\begin{array}{cc}
0 & \frac{\mp 1-j}{\sqrt{2}} \\
\frac{\mp 1-j}{\sqrt{2}} & 0
\end{array}\right]
$$

Note:
We are describing a two-port device here, in the even and odd mode cases.

This is a 2×2 matrix, not a 4×4 matrix.

Appendix A (cont.)

Adding even and odd mode cases together:

$$
\begin{aligned}
& \begin{aligned}
S_{11}=\left.\frac{V_{1}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} \Rightarrow S_{11} & =\frac{V_{1}^{-e}+V_{1}^{-o}}{V^{+}+V^{+}}=\frac{V_{1}^{-e}+V_{1}^{-o}}{2 V^{+}}=\frac{1}{2}\left(\frac{V_{1}^{-e}}{V^{+}}+\frac{V_{1}^{-o}}{V^{+}}\right) \\
& =\frac{1}{2}\left(S_{11}^{e}+S_{11}^{o}\right)=0+0
\end{aligned}
\end{aligned}
$$

Hence $\quad S_{11}=0$
By symmetry: $\quad S_{11}=S_{22}=S_{33}=S_{44}=0$

Appendix A (cont.)

$$
\begin{aligned}
& S_{21}=\left.\frac{V_{2}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} \quad \Rightarrow \quad S_{21}=\frac{V_{2}^{-e}+V_{2}^{-o}}{V^{+}+V^{+}}=\frac{V_{2}^{-e}+V_{2}^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{21}^{e}+S_{21}^{o}\right) \\
& =\frac{1}{2}\left[\left(\frac{-1-j}{\sqrt{2}}\right)+\left(\frac{1-j}{\sqrt{2}}\right)\right] \\
& =\frac{-j}{\sqrt{2}}
\end{aligned}
$$

By symmetry and reciprocity: $\quad S_{21}=S_{12}=S_{43}=S_{34}=\frac{-j}{\sqrt{2}}$

Appendix A (cont.)

$$
\begin{aligned}
& \begin{aligned}
S_{31}=\left.\frac{V_{3}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} \Rightarrow S_{31} & =\frac{V_{3}^{-e}+V_{3}^{-o}}{V^{+}+V^{+}}=\frac{V_{3}^{-e}+V_{3}^{-o}}{2 V^{+}}=\frac{V_{2}^{-e}-V_{2}^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{21}^{e}-S_{21}^{o}\right) \\
& =\frac{1}{2}\left[\left(\frac{-1-j}{\sqrt{2}}\right)-\left(\frac{1-j}{\sqrt{2}}\right)\right] \\
& =\frac{-1}{\sqrt{2}}
\end{aligned}
\end{aligned}
$$

By symmetry and reciprocity: $\quad S_{31}=S_{13}=S_{24}=S_{42}=\frac{-1}{\sqrt{2}}$

Appendix A (cont.)

$$
\begin{aligned}
& S_{41}=\left.\frac{V_{4}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} \Rightarrow S_{41}=\frac{V_{4}^{-e}+V_{4}^{-o}}{V^{+}+V^{+}}=\frac{V_{4}^{-e}+V_{4}^{-o}}{2 V^{+}}=\frac{V_{1}^{-e}-V_{1}^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{11}^{e}-S_{11}^{o}\right)=0
\end{aligned}
$$

By symmetry and reciprocity: $\quad S_{41}=S_{14}=S_{23}=S_{32}=0$

Appendix B

Here we analyze the Rat-Race Ring coupler.

Appendix B (cont.)

Port 1 Excitation
"even" problem

$$
\begin{aligned}
& Y_{0}=1 / Z_{0} \\
& Y_{0 s}=Y_{0} / \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
Y_{s 1} & =j Y_{0 s 1} \tan \left(\beta_{s} l_{s 1}\right) \\
& =j\left(Y_{0} / \sqrt{2}\right) \tan (\pi / 4) \\
& =j Y_{0} / \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
Y_{s 2} & =j Y_{0 s 2} \tan \left(\beta_{s} l_{s 2}\right) \\
& =j\left(Y_{0} / \sqrt{2}\right) \tan (3 \pi / 4) \\
& =-j Y_{0} / \sqrt{2}
\end{aligned}
$$

Appendix B (cont.)

Port 1 Excitation "odd" problem

$$
\begin{aligned}
Y_{s 1} & =-j Y_{0 s 1} \cot \left(\beta_{s} l_{s}\right) \\
& =-j\left(Y_{0} / \sqrt{2}\right) \cot (\pi / 4) \\
& =-j Y_{0} / \sqrt{2} \\
Y_{s 1} & =-j Y_{0 s 2} \cot \left(\beta_{s} l_{s}\right) \\
& =-j\left(Y_{0} / \sqrt{2}\right) \cot (3 \pi / 4) \\
& =j Y_{0} / \sqrt{2}
\end{aligned}
$$

Appendix B (cont.)

Proceeding as for the 90° coupler, we have:

$$
\begin{aligned}
{[A B C D]_{0} } & =\left[\begin{array}{cc}
1 & 0 \\
\frac{ \pm j Y_{0}}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & j \sqrt{2} Z_{0} \\
j \frac{1}{\sqrt{2} Z_{0}} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\mp \frac{j Y_{0}}{\sqrt{2}} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
\frac{ \pm j Y_{0}}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
\pm 1 & j \sqrt{2} Z_{0} \\
j \frac{1}{\sqrt{2} Z_{0}} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\pm 1 & j \sqrt{2} Z_{0} \\
j \frac{\sqrt{2}}{Z_{0}} & \mp 1
\end{array}\right]
\end{aligned}
$$

Appendix B (cont.)

Converting from the $A B C D$ matrix to the S matrix, we have:

$$
[A B C D]_{0}=\left[\begin{array}{cc}
\pm 1 & j \sqrt{2} Z_{0} \\
j \frac{\sqrt{2}}{Z_{0}} & \mp 1
\end{array}\right]
$$

Note:
We are describing a two-port device here, in the even and odd mode cases.

This is a 2×2 matrix, not a 4×4 matrix.

$$
[S]_{0}=\frac{-j}{\sqrt{2}}\left[\begin{array}{cc}
\pm 1 & 1 \\
1 & \mp 1
\end{array}\right]
$$

Appendix B (cont.)

For the S parameters coming from port 1 excitation, we then have:

$$
\begin{array}{rlrl}
S_{11}=\left.\frac{V_{1}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} & & S_{11} & =\frac{V_{1}^{-e}+V_{1}^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{11}^{e}+S_{11}^{o}\right) \\
S_{11}=S_{33}=0 & & =0 \\
\text { (symmetry) } & & \left.\frac{-j}{\sqrt{2}}+\frac{j}{\sqrt{2}}\right) \\
S_{21}=\left.\frac{V_{2}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} & & =\frac{1}{2}\left(\frac{-j}{\sqrt{2}}+\frac{-j}{\sqrt{2}}\right) \\
S_{21}=S_{12}=S_{34}=S_{43}=\frac{-j}{\sqrt{2}} & & =\frac{-j}{\sqrt{2}} \\
\text { (symmetry and reciprocity) } & &
\end{array}
$$

Appendix B (cont.)

$$
\left.\begin{array}{ll}
S_{31}=\left.\frac{V_{3}^{-}}{V_{1}^{+}}\right|_{a_{2}=a_{3}=a_{4}=0} & S_{31}
\end{array}=\frac{V_{3}^{-e}+V_{3}^{-o}}{2 V^{+}}=\frac{1}{2}\left(S_{11}^{e}-S_{11}^{o}\right)\right)
$$

Similarly, exciting port 2, and using symmetry and reciprocity, we have the following results (derivation omitted):

$$
\begin{aligned}
& S_{22}=S_{44}=0 \\
& S_{23}=S_{32}=S_{14}=S_{41}=0 \\
& S_{24}=S_{42}=\frac{j}{\sqrt{2}}
\end{aligned}
$$

