ECE 5317-6351

Fall 2019
Prof. David R. Jackson
Dept. of ECE

Notes 23
 Filter Design Part 2: General Filter Design

General Filter Design

In this set of notes we examine a general method for designing filters of arbitrary order.

Recipe:

- Start with a normalized low-pass "prototype" design $\left(R_{0}=1, \omega_{c}=1\right)$.
- De-normalize to get a low-pass design with a specified $\left(R_{0}, \omega_{c}\right)$.
- Use frequency transformations to convert the normalized low-pass to a high-pass, bandpass, or bandstop design.

Filter Types

Low-pass

Cutoff frequency

Filter Types (cont.)

High-pass

Cutoff frequency

Filter Types (cont.)

Bandpass

Filter Types (cont.)

Bandstop

General Filter Design (cont.)

Consider a general normalized low-pass filter ladder network:

$$
g_{0}=R_{0}=1[\Omega] \quad g_{2}=L_{2 n}
$$

Note: The last element can be either a series inductor or a parallel capacitor in designs (a) and (b).

$$
g_{0}=R_{0}=1[\Omega] \quad g_{1}=L_{1 n} \quad g_{3}=L_{3 n}
$$

Note: Both forms (a and b) have the same frequency response (for the same N).

General Filter Design (cont.)

Notation:

$g_{0}=$ normalized generator resistance
$g_{k}=\left\{\begin{array}{l}\text { normalized inductance for series inductor } \\ \text { normalized capacitance for parallel capacitor }\end{array}\right.$
$g_{N+1}=\left\{\begin{array}{l}\text { normalized load resistance if } g_{N} \text { is a shunt capacitance } \\ \text { normalized load conductance if } g_{N} \text { is a series inductance }\end{array}\right.$

Note: In most cases, $g_{N+1}=1.0$ (load resistance $R_{L}=$ source resistance R_{s}).

Butterworth Behavior

Insertion Loss: $\operatorname{IL}(\omega) \equiv 10 \log _{10} P_{L R}(\omega)$

$$
\operatorname{IL}\left(\omega_{c}\right)=3 \mathrm{~dB}
$$

Normalized loss-pass prototype

Cutoff frequency

Butterworth Design Table

TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_{0}=1$, $\omega_{c}=1, N=1$ to 10)

\boldsymbol{N}	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000				$k=1$				
3	1.0000	2.0000	1.000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000				Note : $R_{L}=R_{0}$		
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

[^0]
Butterworth Attenuation Plot

Attenuation (Insertion Loss)

FIGURE 8.26 Attenuation versus normalized frequency for maximally flat filter prototypes.
Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, ImpedanceMatching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

Chebyshev Behavior

Insertion Loss: $\operatorname{IL}(\omega) \equiv 10 \log _{10} P_{L R}(\omega)$

$$
\operatorname{IL}\left(\omega_{c}\right)=10 \log _{10}\left(1+k^{2}\right) \mathrm{dB}
$$

Chebyshev Design Table

0.5 dB ripple

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_{0}=1, \omega_{c}=$ $1, N=1$ to $10,0.5 \mathrm{~dB}$ and 3.0 dB ripple)
0.5 dB Ripple

\boldsymbol{N}	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000				Note $: N$ has tobe odd for $R_{L}=R_{0}$.			
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

$$
\text { Ripple }_{\mathrm{dB}}=10 \log _{10}\left(1+k^{2}\right)
$$

Chebyshev Design Table

3.0 dB ripple

TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes ($g_{0}=1, \omega_{c}=$ $1, N=1$ to $10,0.5 \mathrm{~dB}$ and 3.0 dB ripple)

N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095					Note : N has to be odd for $R_{L}=R_{0}$.			
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095
Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching											
Networks, and Coupling Structures, Artech House, Dedham, Mass.,1980, with permission.											

$$
\text { Ripple }_{\mathrm{dB}}=10 \log _{10}\left(1+k^{2}\right)
$$

Chebyshev Attenuation Plot

Attenuation (Insertion Loss)
0.5 dB ripple

Attenuation (Insertion Loss)
3.0 dB ripple

Linear Phase Design Table

(Minimal Pulse Distortion)

TABLE 8.5 Element Values for Maximally Flat Time Delay Low-Pass Filter Prototypes $\left(g_{0}=1, \omega_{c}=1, N=1\right.$ to 10$)$

N	g_{1}	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
1	2.0000	1.0000									
2	1.5774	0.4226	1.0000								
3	1.2550	0.5528	0.1922	1.0000						Note: $R_{L}=R_{0}$	
4	1.0598	0.5116	0.3181	0.1104	1.0000						
5	0.9303	0.4577	0.3312	0.2090	0.0718	1.0000					
6	0.8377	0.4116	0.3158	0.2364	0.1480	0.0505	1.0000				
7	0.7677	0.3744	0.2944	0.2378	0.1778	0.1104	0.0375	1.0000			
8	0.7125	0.3446	0.2735	0.2297	0.1867	0.1387	0.0855	0.0289	1.0000		
9	0.6678	0.3203	0.2547	0.2184	0.1859	0.1506	0.1111	0.0682	0.0230	1.0000	
10	0.6305	0.3002	0.2384	0.2066	0.1808	0.1539	0.1240	0.0911	0.0557	0.0187	1.0000

[^1]
Example

Design a normalized low-pass Butterworth filter for a matched load with an attenuation greater than 15 dB when $\omega / \omega_{c}>1.5$.

From attenuation plot: $N>4$

Choose: $N=5$
Choose " a " design

Example (cont.)

Proposed filter layout:

Recall: $g_{N+1}=\left\{\begin{array}{l}\text { normalized load resistance if } g_{N} \text { is a shunt capacitance } \\ \text { normalized load conductance if } g_{N} \text { is a series inductance }\end{array}\right.$

From Table:

$$
\begin{aligned}
& g_{1}=0.618 \\
& g_{2}=1.618 \\
& g_{3}=2.000 \\
& g_{4}=1.618 \\
& g_{5}=0.618
\end{aligned}
$$

$$
\begin{aligned}
& C_{1 n}=0.618[\mathrm{~F}] \\
& L_{2 n}=1.618[\mathrm{H}] \\
& C_{3 n}=2.000[\mathrm{~F}] \\
& L_{4 n}=1.618[\mathrm{H}] \\
& C_{5 n}=0.618[\mathrm{~F}]
\end{aligned}
$$

Example (cont.)

Results from Ansys Designer

Example

Design a normalized Chebyshev low-pass filter for a matched load with 3.0 dB of ripple in the passband and an attenuation greater than 15 dB when $\omega / \omega_{c}>1.5$.

Note: N has to be odd when $R_{L}=R_{0}$.

From attenuation plot: $N>2$

Choose: $N=3$
Choose " a " design

Example (cont.)

Proposed filter layout:

$$
g_{0}=R_{0}=1[\Omega] \quad g_{2}=L_{2 n}
$$

Recall: $g_{N+1}=\left\{\begin{array}{l}\text { normalized load resistance if } g_{N} \text { is a shunt capacitance } \\ \text { normalized load conductance if } g_{N} \text { is a series indutance }\end{array}\right.$

From Table:

$$
\begin{aligned}
& g_{1}=3.3487 \\
& g_{2}=0.7117 \\
& g_{3}=3.3487
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& C_{1 n}=3.3487[\mathrm{~F}] \\
& L_{2 n}=0.7117[\mathrm{H}] \\
& C_{3 n}=3.3487[\mathrm{~F}]
\end{aligned}
$$

Example (cont.)

Results from Ansys Designer

Denormalization

Impedance scaling:

- This accounts for arbitrary R_{s} and R_{L}
- Scale all impedances by R_{0}.

$$
\begin{aligned}
& R_{s}^{\prime}=(1) R_{0} \\
& R_{L}^{\prime}=\left(R_{L n}\right) R_{0} \\
& L^{\prime}=\left(L_{n}\right) R_{0} \\
& C^{\prime}=\left(C_{n}\right) / R_{0}
\end{aligned}
$$

$$
\text { Example : } R_{0}=50[\Omega]
$$

The prime denotes that there is no longer impedance scaling, but a normalized frequency is still being used ($\omega_{c}=1$).

Denormalization (cont.)

Frequency scaling:

- This allows us to shift from $\omega_{c}=1$ to arbitrary ω_{c}
- Replace ω with ω / ω_{c} (and require same impedances)

$$
\begin{aligned}
& \omega \text { in prototype } \\
& \downarrow \\
& j \omega L^{\prime} \rightarrow j\left(\frac{\omega}{\omega_{c}}\right) L^{\prime}=j \omega\left(\frac{L^{\prime}}{\omega_{c}}\right)=j \omega L \\
& j \omega C^{\prime} \rightarrow j\left(\frac{\omega}{\omega_{c}}\right) C^{\prime}=j \omega\left(\frac{C^{\prime}}{\omega_{c}}\right)=j \omega C \\
& \text { Hence: filter } \quad \begin{aligned}
R_{s} & =R_{0} \\
R_{L} & =R_{0} \\
L & =\left(L^{\prime}\right) / \omega_{c} \\
C & =\left(C^{\prime}\right) / \omega_{c}
\end{aligned}
\end{aligned}
$$

Denormalization (cont.)

Impedance and frequency scaling:

- This scales the impedance and shifts from $\omega_{c}=1$ to arbitrary ω_{c}.

$$
\begin{aligned}
& R_{s}=R_{0} \\
& R_{L}=R_{L n} R_{0} \\
& L=\left(L_{n} R_{0}\right) / \omega_{c} \\
& C=\left(C_{n} / R_{0}\right) / \omega_{c}
\end{aligned}
$$

This takes us from the normalized "prototype" low-pass filter to the final low-pass filter.

Design a low-pass Butterworth filter for a matched 50Ω load with $f_{c}=1.0 \mathrm{GHz}$ and an attenuation greater than 15 dB when $\omega / \omega_{c}>1.5$.

Choose type "a" design (arbitrary choice)

Recall the normalized design:

$$
\begin{array}{ll}
g_{1}=0.618 & C_{1 n}=0.618[\mathrm{~F}] \\
g_{2}=1.618 & L_{2 n}=1.618[\mathrm{H}] \\
g_{3}=2.000 & C_{3 n}=2.000[\mathrm{~F}] \\
g_{4}=1.618 & L_{4 n}=1.618[\mathrm{H}] \\
g_{5}=0.618 & C_{5 n}=0.618[\mathrm{~F}]
\end{array}
$$

Example (cont.)

De-normalization:

$R_{s}=R_{0}$
$R_{L}=R_{L n} R_{0}$
$L=\left(L_{n} R_{0}\right) / \omega_{c}$

$C=\left(C_{n} / R_{0}\right) / \omega_{c}$$\quad \square \quad$| $R_{s}=50$ |
| :--- |
| $R_{L}=R_{L n} 50$ |
| $L=\left(L_{n} 50\right) /\left(2 \pi 10^{9}\right)$ |
| $C=\left(C_{n} / 50\right) /\left(2 \pi 10^{9}\right)$ |

$$
\begin{aligned}
& C_{1}=1.967[\mathrm{pF}] \\
& L_{2}=12.88[\mathrm{nH}] \\
& C_{3}=6.366[\mathrm{pF}] \\
& L_{4}=12.88[\mathrm{nH}] \\
& C_{5}=1.967[\mathrm{pF}]
\end{aligned}
$$

Example (cont.)

Results (from Ansys Designer)

Frequency Transformation

Normalized low-pass \rightarrow High-pass

Note : $P_{L R}(\omega)=$ even function of ω
(Negative values of ω in the normalized prototype (red color) have been converted to positive values.)

Frequency Transformation (cont.)

What happens to the circuit elements in the prototype?

$$
\begin{aligned}
\omega & \rightarrow-\frac{\omega_{c}}{\omega} \\
j \omega L_{n} \rightarrow j\left(-\frac{\omega_{c}}{\omega}\right) L_{n} & =\frac{1}{j \omega\left(1 /\left(\omega_{c} L_{n}\right)\right)}=\frac{1}{j \omega C} \\
C & \rightarrow \frac{1}{\omega_{c} L_{n}}
\end{aligned}
$$

We also need to divide C by a factor of R_{0} to account for impedance scaling.

Frequency Transformation (cont.)

$$
\omega \rightarrow-\frac{\omega_{c}}{\omega}
$$

$$
j \omega C_{n} \rightarrow j\left(-\frac{\omega_{c}}{\omega}\right) C_{n}=\frac{1}{j \omega\left(1 /\left(\omega_{c} C_{n}\right)\right)}=\frac{1}{j \omega L}
$$

C_{n}

$$
L=\frac{1}{\omega_{c} C_{n}}
$$

Also, we need to multiply L by a factor of R_{0} to account for impedance scaling.

Frequency Transformation (cont.)

Summary

Normalized low-pass \rightarrow High-pass

$$
\omega \rightarrow-\frac{\omega_{c}}{\omega}
$$

Normalized low-pass

$$
\begin{aligned}
& R_{s}=R_{0} \\
& R_{L}=R_{L n} R_{0} \\
& C=\frac{1}{\omega_{c} L_{n} R_{0}} \\
& L=\frac{R_{0}}{\omega_{c} C_{n}}
\end{aligned}
$$

Final high-pass

Frequency Transformation (cont.)

Normalized low pass \rightarrow Bandpass

Replace: $\omega \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \quad \begin{array}{r}\Delta=\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \\ \text { Relative bandwidth }\end{array}$

Center frequency
Note: $P_{L R}(\omega)=$ even function of ω
(Negative values of ω in the normalized prototype (red color) have been converted to positive values.)

Frequency Transformation (cont.)

Verification of mapping

Denormalized: $\omega=\omega_{1}$

Normalized:

$$
\begin{aligned}
\omega & =\frac{1}{\Delta}\left(\frac{\omega_{1}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{1}}\right) \\
& =\frac{1}{\Delta}\left(\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{1}}\right) \\
& =\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\left(\omega_{2}-\omega_{1}\right) \omega_{1}} \\
& =\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{1} \omega_{2}-\omega_{1}^{2}} \\
& =\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{0}^{2}-\omega_{1}^{2}} \\
& =-1
\end{aligned}
$$

Denormalized: $\omega=\omega_{2}$
Normalized:

$$
\begin{aligned}
\omega & =\frac{1}{\Delta}\left(\frac{\omega_{2}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{2}}\right) \\
& =\frac{1}{\Delta}\left(\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{2}}\right) \\
& =\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\left(\omega_{2}-\omega_{1}\right) \omega_{2}} \\
& =\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{2}^{2}-\omega_{1} \omega_{2}} \\
& =\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{2}^{2}-\omega_{0}^{2}} \\
& =1
\end{aligned}
$$

Frequency Transformation (cont.)

Transformation of elements

$$
\begin{gathered}
\omega \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) \\
j \omega L_{n} \rightarrow j \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) L_{n}=j \omega\left(\frac{L_{n}}{\omega_{0} \Delta}\right)+\frac{1}{j \omega\left(\Delta /\left(L_{n} \omega_{0}\right)\right)}=j \omega L_{s}+\frac{1}{j \omega C_{s}} \\
L_{s}=\frac{L_{n}}{\omega_{0} \Delta}, C_{s}=\frac{\Delta}{L_{n} \omega_{0}} \\
\begin{array}{c}
\text { Also, we need to add factors of } R_{0} \text {, to account for impedance scaling } \\
\text { (multiply } \left.L_{s} \text { with } R_{0} \text {, divide } C_{s} \text { by } R_{0}\right) \text {. }
\end{array}
\end{gathered}
$$

Frequency Transformation (cont.)

$$
\omega \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

$$
\begin{gathered}
j \omega C_{n} \rightarrow j \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right) C_{n}=j \omega\left(\frac{C_{n}}{\omega_{0} \Delta}\right)+\frac{1}{j \omega\left(\Delta /\left(C_{n} \omega_{0}\right)\right)}=j \omega C_{p}+\frac{1}{j \omega L_{p}} \\
C_{p}=\frac{C_{n}}{\omega_{0} \Delta}, \quad L_{p}=\frac{\Delta}{C_{n} \omega_{0}}
\end{gathered}
$$

Also, we need to add factors of R_{0} to account for impedance scaling (multiply L_{p} with R_{0}, divide C_{p} by R_{0}).

Frequency Transformation (cont.)

Summary

Normalized low-pass \rightarrow Bandpass

$$
\omega \rightarrow \frac{1}{\Delta}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)
$$

Normalized low-pass

$$
\begin{aligned}
& R_{s}=R_{0} \\
& R_{L}=R_{L n} R_{0} \\
& L_{s}=\frac{L_{n} R_{0}}{\omega_{0} \Delta} \\
& C_{s}=\frac{\Delta}{L_{n} \omega_{0} R_{0}} \\
& L_{p}=\frac{\Delta R_{0}}{C_{n} \omega_{0}} \\
& C_{p}=\frac{C_{n}}{\omega_{0} \Delta R_{0}}
\end{aligned}
$$

Frequency Transformation (cont.)

Normalized low pass \rightarrow Bandstop

Replace: $\quad \omega \rightarrow-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1} \quad \Delta=\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \quad \omega_{0}=\sqrt{\omega_{1} \omega_{2}}$
Relative bandwidth

Note: $P_{L R}(\omega)=$ even function of ω
(Negative values of ω in the normalized prototype (red color) have been converted to positive values.)

Frequency Transformation (cont.)

Verification of mapping

Denormalized: $\omega=\omega_{1}$
Normalized:

$$
\begin{aligned}
\omega & =-\Delta\left(\frac{\omega_{1}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{1}}\right)^{-1} \\
& =-\Delta\left(\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{1}}\right)^{-1} \\
& =-\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \frac{\omega_{0} \omega_{1}}{\omega_{1}^{2}-\omega_{0}^{2}} \\
& =-\frac{\omega_{1} \omega_{2}-\omega_{1}^{2}}{\omega_{1}^{2}-\omega_{0}^{2}} \\
& =\frac{\omega_{1}^{2}-\omega_{0}^{2}}{\omega_{1}^{2}-\omega_{0}^{2}} \\
& =1
\end{aligned}
$$

Denormalized: $\omega=\omega_{2}$
Normalized:

$$
\begin{aligned}
\omega & =-\Delta\left(\frac{\omega_{2}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{2}}\right)^{-1} \\
& =-\Delta\left(\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{2}}\right)^{-1} \\
& =-\frac{\omega_{2}-\omega_{1}}{\omega_{0}} \frac{\omega_{0} \omega_{2}}{\omega_{2}^{2}-\omega_{0}^{2}} \\
& =-\frac{\omega_{2}^{2}-\omega_{1} \omega_{2}}{\omega_{2}^{2}-\omega_{0}^{2}} \\
& =-\frac{\omega_{2}^{2}-\omega_{0}^{2}}{\omega_{2}^{2}-\omega_{0}^{2}} \\
& =-1
\end{aligned}
$$

Frequency Transformation (cont.)
Transformation of elements

$$
\omega \rightarrow-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}
$$

$$
\begin{gathered}
j \omega L_{n} \rightarrow j\left(-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}\right) L_{n} \quad, \quad\left(j \omega L_{n}\right)^{-1} \rightarrow \frac{j}{\Delta}\left(\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right) \frac{1}{L_{n}} \\
\text { so } \quad\left(j \omega L_{n}\right)^{-1} \rightarrow j \omega\left(\frac{1}{\omega_{0} L_{n} \Delta}\right)+\frac{1}{j \omega\left(L_{n} \Delta / \omega_{0}\right)} \\
L_{n}=\frac{L_{n} \Delta}{\omega_{0}}, \quad C_{p}=\frac{1}{L_{n} \omega_{0} \Delta}
\end{gathered}
$$

Also, we need to add factors of R_{0} to account for impedance scaling (multiply L_{p} with R_{0}, divide C_{p} by R_{0}).

Frequency Transformation (cont.)

$$
\begin{gathered}
\omega \rightarrow-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1} \\
j \omega C_{n} \rightarrow j\left(-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}\right) C_{n} \quad, \quad\left(j \omega C_{n}\right)^{-1} \rightarrow \frac{j}{\Delta}\left(\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right) \frac{1}{C_{n}} \\
\text { so } \quad\left(j \omega C_{n}\right)^{-1} \rightarrow j \omega\left(\frac{1}{\omega_{0} C_{n} \Delta}\right)+\frac{1}{j \omega\left(C_{n} \Delta / \omega_{0}\right)} \\
\rightarrow \quad \rightarrow \quad-\quad C_{n} \\
L_{s}=\frac{1}{\omega_{0} C_{n} \Delta}, \quad C_{s}=\frac{C_{n} \Delta}{\omega_{0}} \quad L_{s}
\end{gathered}
$$

Frequency Transformation (cont.)

Summary

Normalized low-pass \rightarrow Bandstop

$$
\omega \rightarrow-\Delta\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)^{-1}
$$

Prototype low-pass

$R_{s}=R_{0}$
$R_{L}=R_{L n} R_{0}$
$L_{p}=\frac{L_{n} R_{0} \Delta}{\omega_{0}}$
$C_{p}=\frac{1}{L_{n} \omega_{0} R_{0} \Delta}$
$L_{s}=\frac{R_{0}}{\omega_{0} C_{n} \Delta}$
$C_{s}=\frac{C_{n} \Delta}{\omega_{0} R_{0}}$
Final bandstop

Example

Design an $N=3$ Chebyshev bandpass filter for a matched 50Ω load with 0.5 dB of ripple in the passband, a 10% bandwidth, and a center frequency of 1.0 GHz .

Choose type " b " low-pass prototype:

$$
\begin{gathered}
N=3=\text { odd } \\
\Rightarrow g_{4}=1
\end{gathered}
$$

From table:

$$
\begin{aligned}
& g_{1}=L_{1 n}=1.5963 \\
& g_{2}=C_{2 n}=1.0967 \\
& g_{3}=L_{3 n}=1.5963
\end{aligned} \quad g_{N+1}=\left\{\begin{array}{l}
\text { normalized load resistance if } g_{N} \text { is a shunt capacitance } \\
\text { normalized load conductance if } g_{N} \text { is a series inductance }
\end{array}\right.
$$

Example (cont.)

Transform to bandpass:

Bandpass:

From table:

$$
\begin{aligned}
& g_{1}=L_{1 n}=1.5963 \\
& g_{2}=C_{2 n}=1.0967 \\
& g_{3}=L_{3 n}=1.5963
\end{aligned}
$$

For $k=1,3: \quad$ For $k=2$:

$$
\begin{array}{ll}
L_{s}=\frac{L_{n} R_{0}}{\omega_{0} \Delta} & L_{p}=\frac{R_{0} \Delta}{C_{n} \omega_{0}} \\
C_{s}=\frac{\Delta}{L_{n} \omega_{0} R_{0}} & C_{p}=\frac{C_{n}}{\omega_{0} R_{0} \Delta}
\end{array}
$$

$$
\begin{aligned}
& R_{s}=R_{0} \\
& R_{L}=R_{L n} R_{0}
\end{aligned}
$$

$$
L_{s}=\frac{L_{n} R_{0}}{\omega_{0} \Delta}
$$

$$
C_{s}=\frac{\Delta}{L_{n} \omega_{0} R_{0}}
$$

$$
L_{p}=\frac{\Delta R_{0}}{C_{n} \omega_{0}}
$$

$$
C_{p}=\frac{C_{n}}{\omega_{0} \Delta R_{0}}
$$

Example (cont.)

Hence we have:

$$
\begin{aligned}
& L_{1 s}=\frac{L_{n 1} R_{0}}{\omega_{0} \Delta} \\
& C_{1 s}=\frac{\Delta}{L_{n 1} \omega_{0} R_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& L_{2 p}=\frac{R_{0} \Delta}{C_{n 2} \omega_{0}} \\
& C_{2 p}=\frac{C_{n 2}}{\omega_{0} R_{0} \Delta}
\end{aligned}
$$

$$
L_{3 s}=\frac{L_{n 3} R_{0}}{\omega_{0} \Delta}
$$

$$
C_{3 s}=\frac{\Delta}{L_{n 3} \omega_{0} R_{0}}
$$

$$
\begin{aligned}
& L_{1 s}=\frac{(1.5963)(50)}{\left(2 \pi 10^{9}\right)(0.1)} \\
& C_{1 s}=\frac{(0.1)}{(1.5963)\left(2 \pi 10^{9}\right)(50)}
\end{aligned}
$$

$$
\begin{aligned}
& L_{2 p}=\frac{(50)(0.1)}{(1.0967)\left(2 \pi 10^{9}\right)} \\
& C_{2 p}=\frac{(1.0967)}{\left(2 \pi 10^{9}\right)(50)(0.1)}
\end{aligned}
$$

$$
L_{3 s}=\frac{(1.5963)(50)}{\left(2 \pi 10^{9}\right)(0.1)}
$$

$$
C_{3 s}=\frac{(0.1)}{(1.5963)\left(2 \pi 10^{9}\right)(50)}
$$

Example (cont.)

This gives us:

$$
\begin{array}{lll}
L_{1 s}=127[\mathrm{nH}] & L_{2 p}=0.726[\mathrm{nH}] & L_{3 s}=127[\mathrm{nH}] \\
C_{1 s}=0.199[\mathrm{nF}] & C_{2 p}=34.9[\mathrm{pF}] & C_{3 s}=0.199[\mathrm{nF}]
\end{array}
$$

Example (cont.)

Results from Ansys Designer

$$
\begin{gathered}
\text { Ripple }=0.5 \mathrm{~dB} \Rightarrow P_{L R}=0.5 \mathrm{~dB} \Rightarrow P_{L R}=1.122 \Rightarrow\left|S_{21}\right|^{2}=1 / 1.122=0.8913 \\
\Rightarrow\left|S_{11}\right|^{2}=1-\left|S_{21}\right|^{2}=0.1087 \Rightarrow\left|S_{11}\right|=-9.636 \mathrm{~dB} \\
\hline
\end{gathered}
$$

[^0]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

[^1]: Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

