Adapted from notes by Prof. Jeffery T. Williams

ECE 5317-6351 Microwave Engineering

Fall 2019

Prof. David R. Jackson Dept. of ECE

Notes 24

Filter Design Part 3: Transmission Line Filters

Filter Design Using Transmission Lines

In this set of notes we examine filter design using transmission Lines

Recipe:

- We start with a lumped-element design.
- We can use low and high impedance lines to <u>approximate</u> lumped elements: works for <u>series</u> L and <u>shunt</u> C elements (what you need in a low-pass design).
- We can also apply <u>Richard's transformation</u> to change any lumped element design into one with transmission lines.
- We can also use the <u>Kuroda identities</u> to change series TL elements into parallel ones (more convenient for microstrip implementation).

Approximate method:

- Narrow and wide sections of microstrip line can be used to <u>approximately</u> realize <u>series</u> lumped L and <u>shunt</u> C elements.
- Although approximate, this is a simple technique.
- This works well for <u>low-pass</u> filters (where we need series L and shunt C elements).

Consider a section of transmission line (e.g., microstrip line):

 $Z_{11} = Z_{22} = -jZ_0 \cot(\beta l) \qquad \qquad Z_{21} = Z_{12} = -jZ_0 / \sin(\beta l)$

Model:

Element values in the model:

Details of calculation:

$$Z_{11} - Z_{21} = jZ_0 \tan\left(\beta l/2\right) \quad \longleftarrow \qquad Z_{11} - Z_{21} = -jZ_0 \left(\cot\left(\beta l\right) - 1/\sin\left(\beta l\right)\right)$$
$$Z_{21} = -jZ_0 \left(\frac{\cos\left(\beta l\right) - 1}{\sin\left(\beta l\right)}\right)$$
$$= jZ_0 \tan\left(\beta l/2\right)$$

Note:
$$\tan(x/2) = \frac{1-\cos x}{\sin x}$$

Assume: $Z_0 >> 1$, $\beta l \ll 1$ (narrow and short microstrip line)

Assume: $Z_0 \ll 1$, $\beta l \ll 1$ (wide and short microstrip line)

From the previous derivation:

$$\omega L = Z_0^{high} \left(\beta l\right)$$
$$\frac{1}{\omega C} = Z_0^{low} / \left(\beta l\right)$$

Solve for the lengths of the lines that are needed Choose: $\omega = \omega_c$

Series inductors :
$$\omega_{c}L = Z_{high} (\beta l)_{\omega_{c}}$$

Shunt capacitors :
$$\frac{1}{\omega_c C} = Z_{low} / (\beta l)_{\omega_c}$$

Narrow lines (series inductors): $(\beta l)_{\omega_c} = \frac{\omega_c L}{Z_{high}}$ Wide lines (shunt capacitors): $(\beta l)_{\omega_c} = \omega_c C Z_{low}$

Example

Design an N = 6 Butterworth stepped-impedance low-pass filter for a matched 50 Ω load with a cutoff frequency of 2.5 GHz. Choose $Z_{low} = 20 \Omega$, $Z_{high} = 120 \Omega$.

Choose type "a"

From table:

$$g_{1} = C_{1n} = 0.517$$

$$g_{2} = L_{2n} = 1.414$$

$$g_{3} = C_{3n} = 1.932$$

$$g_{4} = L_{4n} = 1.932$$

$$g_{5} = C_{5n} = 1.414$$

$$g_{6} = L_{6n} = 0.517$$

De-normalized filter:

Microstrip Realization

(not drawn to scale)

Figure 8.40 from Pozar

Note:

TX line can first be used to find the line widths (from the chosen Z_0 values), and then used to find the line lengths (from the calculated electrical lengths).

Microstrip Realization

 $h = 1.58 \text{ [mm]}, \varepsilon_r = 4.2, \tan \delta = 0.02$

Section	$Z_i = Z_\ell \text{ or } Z_h(\Omega)$	$\beta \ell_i \text{ (deg)}$	W_i (mm)	$\ell_i \ (\mathrm{mm})$
1	20	11.8	11.3	2.05
2	120	33.8	0.428	6.63
3	20	44.3	11.3	7.69
4	120	46.1	0.428	9.04
5	20	32.4	11.3	5.63
6	120	12.3	0.428	2.41

From p. 425 of Pozar

Results

Figure 8.41 from Pozar

Figure of an Actual Low-Pass Filter

Richard's Transformation

Richard's transformation

Main idea:

Short-circuited and open-circuited transmission lines are chosen to mimic the performance of the lumped L and C elements, respectively.

Richard's transformation:

$$\Omega(\omega) \equiv \omega_c \tan(\beta l) = \omega_c \tan(\omega \sqrt{\mu \varepsilon} l)$$

 Ω = radian frequency in lumped-element design ω = radian frequency in transmission line design

Require:
$$\Omega(\omega_c) = \omega_c$$
 \Longrightarrow $\tan(\omega_c \sqrt{\mu \varepsilon} l) = 1$ $(l = \lambda_g / 8 @ \omega_c)$

(The lumped-element and transmission-line circuits will have the same cutoff frequency.)

Richard's Transformation (cont.)

At any frequency ω , TLs can behave the same as lumped elements at frequency Ω .

Equivalent TL model for a lumped inductor:

Require: $j\Omega L = jZ_0 \tan(\beta l)$ (same impedance property)

 $\implies j\omega_c \tan(\beta l)L = jZ_0 \tan(\beta l)$

$$\Box > Z_0 = \omega_c L$$

The inductor then has the same impedance at <u>any</u> frequency Ω as does the short-circuited transmission line at corresponding frequency ω .

Richard's Transformation (cont.)

Equivalent TL model for a lumped capacitor:

Require: $j\Omega C = jY_0 \tan(\beta l)$ (same admittance property)

 $\implies j\omega_c \tan(\beta l) C = jY_0 \tan(\beta l)$

$$Y_0 = \omega_c C$$

The capacitor then has the same admittance at <u>any</u> frequency Ω as does the open-circuited transmission line at corresponding frequency ω .

Richard's Transformation (cont.)

Illustration of Mapping

$$\Omega(\omega) \equiv \omega_c \tan(\beta l) = \omega_c \tan(\omega \sqrt{\mu \varepsilon} l)$$

(a)
$$\omega_c: \quad \beta l = \frac{\pi}{4} \Rightarrow \tan(\beta l) = 1$$

(a) $2\omega_c: \quad \beta l = \frac{\pi}{2} \Rightarrow \tan(\beta l) = \infty$

Kuroda's Identities

Kuroda's Identity #2 is useful for transforming a series shorted TL into a parallel open-circuited TL.

Note: The TLs all have the same electrical length.

Example

Design an N = 3 Chebyshev low-pass filter for a matched 50 Ω load with 3.0 dB of ripple in the passband and a cutoff frequency of 4.0 GHz.

Choose type "*b*" low-pass prototype:

N = 3 = odd $\implies g_4 = 1$

From table:

$$g_1 = L_{1n} = 3.3487$$

 $g_2 = C_{2n} = 0.7117$
 $g_3 = L_{3n} = 3.3487$

Final lumped-element design:

From table:

 $L_{1n} = 3.3487 [H]$ $C_{2n} = 0.7117 [F]$ $L_{3n} = 3.3487 [H]$

Denormalization:

$$L = (L_n R_0) / \omega_c$$
$$C = (C_n / R_0) / \omega_c$$

Lumped elements:

$$L_1 = 6.66 [nH]$$

 $C_2 = 0.566 [pF]$
 $L_3 = 6.66 [nH]$

Convert to TLs (Richard's transformation):

Add extra 50 Ω transmission lines.

These extra lines do not affect the filter performance.

Apply the Kuroda identity #2:

Final Design

Microstrip Realization

Figure 8.36 from Pozar

Results

Figure 8.37 from Pozar