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 In this set of notes we develop some general formulas 
that hold for any transmission line.

 We first examine the coaxial cable as an example.

Overview
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Coaxial Cable
Here we present a “case study” of one particular transmission line, the coaxial cable. 

Find  C, L, G, R

We will assume no variation in the z direction, and take a length of one meter in 
the z direction in order to calculate the per-unit-length parameters. 
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For a TEMz mode, the shape of  the fields is independent of frequency, and 
hence we can perform the calculation of C and L using electrostatics and 
magnetostatics.  
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Coaxial Cable (cont.)
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Find C (capacitance / length)

Coaxial cable
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0 (C/m) ρ =


line charge density on the inner conductor 



Coaxial cable
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Coaxial Cable (cont.)

5

rε

[ ]1 mh =

rε
0lρ

0lρ−

a

b



ˆ
2

IH φ
π ρ

 
=  

 

Find L (inductance / length)

From Ampere’s law: 

Coaxial cable
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Magnetic flux:

Coaxial Cable (cont.)
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Note:
We ignore “internal inductance” here, and only 

look at the magnetic field between the two 
conductors (accurate for high frequency.
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Coaxial Cable (cont.)
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( )0 0 r rLC µε µ ε µ ε= =

This result actually holds for any transmission line that is 
homogenously filled* (proof omitted).

Coaxial Cable (cont.)
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(independent of frequency)

(independent of frequency)

*This result assumes that the permittivity is real. To be more general, for a lossy
line, we replace the permittivity with the real part of the permittivity in this result.
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For a lossless (or low loss) cable:
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Coaxial Cable (cont.)
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Find G (conductance / length)

Coaxial cable

From Gauss’s law: 
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Coaxial Cable (cont.)
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Coaxial Cable (cont.)
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Observation:
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Coaxial Cable (cont.)
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*This result assumes that the G term arises only from conductivity, and not polarization loss.

This result actually holds for any transmission line that is 
homogenously filled* (proof omitted).
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Coaxial Cable (cont.)

As just derived,
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This is the loss tangent that would 
arise from conductivity.

*This result is very general, and allows the G term to come from either conductivity or polarization loss.

or

This result actually holds for any transmission line that is 
homogenously filled* (proof omitted).



Complex Permittivity

Accounting for Dielectric Loss
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The permittivity becomes complex when there is 
polarization (molecular friction) loss.

( )jε ε ε′ ′′= −

Loss term due to polarization (molecular friction) 

Example: Distilled water heats up in a microwave oven, even though there is 
essentially no conductivity!



Effective Complex Permittivity

c j σε ε
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Effective permittivity that accounts for conductivity
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The effective permittivity accounts for conductive loss.
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Hence We then have

Accounting for Dielectric Loss (cont.)



Most general expression for loss tangent:
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Accounting for Dielectric Loss (cont.)

The loss tangent accounts for both molecular friction and conductivity.



For most practical insulators (e.g., Teflon), we have
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0σ ≈

Note: The loss tangent is usually (approximately) constant for 
practical insulating materials, over a wide range of frequencies.

Typical microwave insulating material (e.g., Teflon): tanδ = 0.001.

Accounting for Dielectric Loss (cont.)
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Accounting for Dielectric Loss (cont.)

r rε ε′In most books,   is denoted as simply 

Important point about notation:

( )1 tanrc r jε ε δ= − 

In this case we then write:

( )r rcεε ′′Means real part of 

(We will adopt this convention also.)

The effective complex relative permittivity



Find R (resistance / length)

Coaxial cable

Coaxial Cable (cont.)
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Rs = surface resistance of metal
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[ ]1 mh =

(This is discussed later.)

δ = skin depth of metal

,b rbσ µ
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Outer conductor



General Formulas for (L,G,C)

( ) tan dG Cω δ=

0 0 0
lossless

r rL Z µ ε µ ε=

0 0 0/ lossless
r rC Zµ ε µ ε=

The three per-unit-length parameters (L, G, C) can be found from
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0 , , tanlossless
r dZ ε δ

0
lossless LZ

C
=≡ characteristic impedance of   line  lossless

These values are usually known from the manufacturer.

These formulas hold for 
any homogeneously-

filled transmission line.



General Formulas for (L,G,C) (cont.)

The derivation of the previous results follows from:
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General Formulas for (L,G,C) (cont.)

Example:
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A transmission line has the following properties: 

( )2.1rε = Teflon

0 50losslessZ = Ω

tan 0.001δ =

[ ]
[ ]
[ ]

7

11

3

2.4169 10 H/m

9.6677 10 F/m

6.0744 10 S/m

L
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−

−

−

= ×

= ×

= ×

Results:

[ ]10 GHzf = (frequency is only needed for G)

Note: 
We cannot determine R without 

knowing the type of transmission line 
and the dimensions (and the 

conductivity of the metal).



Wavenumber Formulas
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General case (R,L,G,C): 

( )( )zk j j R j L G j Cβ α ω ω= − = − + +

Lossless case (L,C): 

0z r rk LC k kβ ω ω µε µ ε= = = = =

Dielectric loss only (L,C,G): 

0z c r rck k k jk kω µε µ ε′ ′′= = = − = (please see next slide)



Wavenumber (cont.)
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Dielectric loss only (L,C,G): 

( )( )

( )( tan )

( )( tan )

( )(tan )

(1 tan )

(1 tan )

(1 tan )

z

d

d

d

d

d

d

c

k j j L G j C

j j L C j C

j jL C jC

j LC j j

j LC j

LC j

j

k

ω ω

ω ω δ ω

ω δ

ω δ

ω δ

ω δ

ω µε δ

ω µε

=− +

= − +

= − +

= − +

= − − −

= −

′= −

=

=

Note: 
The mode stays a perfect 

TEMz mode if R = 0. 
kz = k for any TEMz mode.
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Common Transmission Lines
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(skin depth of metal for inner or outer conductors)

(surface resistance of metal for inner or outer conductors)



Common Transmission Lines

Twin-lead 
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Common Transmission Lines (cont.) 

Microstrip ( / 1)w h ≤
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Approximate CAD formula
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Common Transmission Lines (cont.) 

Microstrip
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Approximate CAD formula

εr

w t
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Note: 
Usually w/h > 1 for a 

50 Ω line.



Common Transmission Lines (cont.) 

Microstrip ( / 1)w h ≥
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Approximate CAD formula
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