ECE 5317-6351

 Microwave Engineering

 Microwave Engineering}

Fall 2019
Prof. David R. Jackson Dept. of ECE

Notes 9
 Waveguiding Structures Part 4:
 Rectangular and Circular Waveguide

Rectangular Waveguide

- One of the earliest waveguides.
- Still common for high power and lowloss microwave / millimeter-wave applications.

- It is essentially an electromagnetic pipe with a rectangular cross-section.

Single conductor \Rightarrow No TEM mode

For convenience:

- $a \geq b$ (the long dimension lies along x).

Rectangular Waveguide (cont.)

Two types of modes:

$$
\begin{gathered}
\mathrm{TE}_{z}, \mathrm{TM}_{z} \\
k_{z}=\left(k^{2}-k_{c}^{2}\right)^{1 / 2} \\
k=\omega \sqrt{\mu \varepsilon_{c}}=k_{0} \sqrt{\varepsilon_{r}\left(1-j \tan \delta_{d}\right)}
\end{gathered}
$$

The cutoff wavenumber k_{c} is real.
We need to solve for k_{c}.

$$
\begin{aligned}
& f>f_{c}: k_{z}=\sqrt{k^{2}-k_{c}^{2}} \\
& f<f_{c}: k_{z}=-j \sqrt{k_{c}^{2}-k^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon_{c} & =\varepsilon-j \frac{\sigma}{\omega} \\
& =\varepsilon^{\prime}-j \varepsilon^{\prime \prime}-j \frac{\sigma}{\omega} \\
& =\varepsilon_{c}^{\prime}-j \varepsilon_{c}^{\prime \prime} \\
& =\varepsilon_{c}^{\prime}\left(1-j \frac{\varepsilon_{c}^{\prime \prime}}{\varepsilon_{c}^{\prime}}\right) \\
& =\varepsilon_{c}^{\prime}\left(1-j \tan \delta_{d}\right) \\
& =\varepsilon_{0} \varepsilon_{r}\left(1-j \tan \delta_{d}\right)
\end{aligned}
$$

For $+z$ propagation:

$$
H_{z}(x, y, z)=h_{z}(x, y) e^{-j k_{z} z}
$$

where

$$
\begin{array}{r}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+k_{c}^{2}\right) h_{z}(x, y)=0 \\
k_{c} \equiv\left(k^{2}-k_{z}^{2}\right)^{1 / 2}
\end{array}
$$

From previous field table:
Subject to B.C.'s:
$E_{x}=\frac{-j}{k_{c}^{2}}\left(k_{z} \frac{\partial E_{z}^{\prime}}{\partial x}+\omega \mu \frac{\partial H_{z}}{\partial y}\right)$
$E_{y}=\frac{j}{k_{c}^{2}}\left(-k_{z} \frac{\partial E_{z}^{\prime}}{\partial y}+\omega \mu \frac{\partial H_{z}}{\partial x}\right)$

$$
\begin{array}{ll}
E_{x}=0 \Rightarrow \frac{\partial H_{z}}{\partial y}=0 & @ y=0, b \\
E_{y}=0 \Rightarrow \frac{\partial H_{z}}{\partial x}=0 & @ x=0, a
\end{array}
$$

TE_{z} Modes (cont.)

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) h_{z}(x, y)=-k_{c}^{2} h_{z}(x, y) \quad \text { (eigenvalue problem) }
$$

Using separation of variables, let $h_{z}(x, y)=X(x) Y(y)$

$$
\Rightarrow \quad Y \frac{d^{2} X}{d x^{2}}+X \frac{d^{2} Y}{d y^{2}}=-k_{c}^{2} X Y
$$

This is the "separation equation".

$$
\begin{gathered}
\Rightarrow \frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-k_{c}^{2} \quad \begin{array}{l}
\text { (If we take one term across the equal sign, we } \\
\text { have a function of } x \text { equal to a function of } y \text {.) }
\end{array} \\
\Rightarrow \frac{1}{X} \frac{d^{2} X}{d x^{2}}=-k_{x}^{2} \quad \text { and } \quad \frac{1}{Y} \frac{d^{2} Y}{d y^{2}}=-k_{y}^{2} \\
\text { where } \quad k_{x}^{2}+k_{y}^{2}=k_{c}^{2} \longleftarrow \text { "separation equation" }
\end{gathered}
$$

Hence,

$$
h_{z}(x, y)=\overbrace{\left(A \cos k_{x} x+B \sin k_{x} x\right)}^{X(x)} \overbrace{\left(C \cos k_{y} y+D \sin k_{y} y\right)}^{Y(y)}
$$

Boundary Conditions: $\left\{\begin{array}{lll}\frac{\partial h_{z}}{\partial y}=0 & @ y=0, b & \text { (A) } \\ \frac{\partial h_{z}}{\partial x}=0 & @ x=0, a & \text { (B) }\end{array}\right.$
(A) $\Rightarrow D=0 \quad$ and $\quad k_{y}=\frac{n \pi}{b} \quad n=0,1,2, \ldots$
(B) $\Rightarrow B=0 \quad$ and $\quad k_{x}=\frac{m \pi}{a} \quad m=0,1,2, \ldots$
$\Rightarrow \quad h_{z}(x, y)=A_{m m} \cos \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) \quad$ and $\quad k_{c}^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$

TE_{z} Modes (cont.)

Therefore,

$$
H_{z}(x, y, z)=A_{m n} \cos \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z}
$$

From the field table, we obtain the following:

$$
\begin{aligned}
k_{z}= & \left(k^{2}-k_{c}^{2}\right)^{1 / 2} \\
= & =\left(k^{2}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}\right)^{1 / 2} \\
& k_{c}=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}
\end{aligned}
$$

$E_{x}=\frac{j \omega \mu n \pi}{k_{c}^{2} b} A_{m n} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) e^{-j k_{2} z}$
$E_{y}=-\frac{j \omega \mu m \pi}{k_{c}^{2} a} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j k_{c_{z}}}$
$H_{x}=\frac{j k_{z} m \pi}{k_{c}^{2} a} A_{m n} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j k_{z_{z}}}$
$H_{y}=\frac{j k_{x} n \pi}{k_{c}^{2} b} A_{m n} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) e^{-j k_{2} z}$

Note:

$$
\begin{aligned}
& m=0,1,2, \ldots \\
& n=0,1,2, \ldots
\end{aligned}
$$

But $m=n=0$ is not allowed!
(non-physical solution)

$$
\underline{H}=\underline{\hat{\hat{z}}} A_{00} e^{-j k} ; \nabla \cdot \underline{H} \neq 0
$$

Reason for non-physical solution

Start with the vector wave equation:

$$
\nabla \times(\nabla \times \underline{H})-k^{2} \underline{H}=\underline{0} \quad \text { Vector wave equation: from Maxwell's equations. }
$$

$\sqrt{7}$ Take divergence of both sides.

$\nabla \cdot \underline{H}=0 \quad$ Magnetic Gauss law

TE_{z} Modes (cont.)

Reason for non-physical solution

Revisit how we obtained the vector Helmholtz equation:

$$
\begin{aligned}
& \nabla \times(\nabla \times \underline{H})-k^{2} \underline{H}=\underline{0} \quad \text { Vector wave equation: from Maxwell's equations. } \\
& \underbrace{\nabla(\nabla \cdot \underline{H})-\nabla^{2} \underline{H}}_{\nabla \times \nabla \times \underline{H}}-k^{2} \underline{H}=\underline{0} \quad \text { From definition of vector Laplacian }
\end{aligned}
$$

Now use:

$$
\nabla \cdot \underline{H}=0 \quad \text { Magnetic Gauss law } \quad \text { A needed assumption! }
$$

$$
\nabla^{2} \underline{H}+k^{2} \underline{H}=\underline{0} \quad \text { Vector Helmholtz equation (what we have solved) }
$$

Reason for non-physical solution

$$
\begin{gathered}
\text { Vector wave equation } \Rightarrow \text { magnetic Gauss law } \\
\text { Vector Helmholtz equation } \nRightarrow \text { magnetic Gauss law }
\end{gathered}
$$

The vector Helmholtz equation does not guarantee that the magnetic Gauss law is satisfied. In the mathematical derivation, we need to assume the magnetic Gauss law in order to arrive at the vector Helmholtz equation.

All of the modes that we get by solving the Helmholtz equation should be checked to make sure that they do satisfy the magnetic Gauss law.

Note: The TE_{00} mode is the only one that violates the magnetic Gauss law.

TE_{z} Modes (cont.)

Lossless case $\left(\varepsilon_{c}=\varepsilon=\varepsilon^{\prime}\right)$

$$
k_{z}^{m n}=\left(k^{2}-\left(k_{c}^{m n}\right)^{2}\right)^{1 / 2}=\left(k^{2}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}\right)^{1 / 2}
$$

$\Rightarrow \mathrm{TE}_{m n}$ mode is at cutoff when $k=k_{c}^{m n} \quad\left(k=\omega_{c}^{m n} \sqrt{\mu \varepsilon}\right)$

$$
f_{c}^{m n}=\frac{1}{2 \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
$$

Lowest cutoff frequency is for TE_{10} mode ($a>b$)

$$
f_{c}^{10}=\frac{1}{2 a \sqrt{\mu \varepsilon}}
$$ (lowest f_{c})

TE_{z} Modes (cont.)

At the cutoff frequency of the TE_{10} mode (lossless waveguide):

$$
\lambda_{d}=\frac{c_{d}}{f}=\frac{c_{d}}{f_{c}^{10}}=\frac{c_{d}}{\frac{1}{2 a \sqrt{\mu \varepsilon}}}=2 a
$$

SO

$$
a=\lambda_{d} /\left.2\right|_{f=f_{c}}
$$

TE_{z} Modes (cont.)

To have propagation:

$$
f>f_{c}
$$

SO

$$
f>\frac{1}{2 a \sqrt{\mu \varepsilon}}
$$

or

$$
\begin{aligned}
& a>\frac{1}{2 f \sqrt{\mu \varepsilon}}=\frac{1}{2} \frac{c_{d}}{f}=\frac{\lambda_{d}}{2} \\
& \text { or } \\
& \quad a>\frac{\lambda_{d}}{2}
\end{aligned}
$$

Example: Air-filled waveguide, $f=10 \mathrm{GHz}$. We have that $a>3.0 \mathrm{~cm} / 2=1.5 \mathrm{~cm}$.

TM ${ }_{z}$ Modes

Recall:

$$
E_{z}(x, y, z)=e_{z}(x, y) e^{-j k_{z} z}
$$

where

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) e_{z}(x, y)=-k_{c}^{2} e_{z}(x, y)
$$

(eigenvalue problem)

$$
k_{c}=\left(k^{2}-k_{z}^{2}\right)^{1 / 2}
$$

Subject to B.C.'s: $\quad E_{z}=0$ @ $x=0, a$
(a) $y=0, b$

Thus, following same procedure as before, we have the following result:
$\boldsymbol{e}_{z}(x, y)=\overbrace{\left(A \cos k_{x} x+B \sin k_{x} x\right)}^{X(x)} \overbrace{\left(C \cos k_{y} y+D \sin k_{y} y\right)}^{Y(y)}$

Boundary Conditions: $\quad e_{z}=0$ @ $y=0, b$ (A)

$$
\text { @ } x=0, a \quad \text { B }
$$

(A) $\Rightarrow C=0 \quad$ and $\quad k_{y}=\frac{n \pi}{b} \quad n=0,1,2, \ldots$
(B) $\Rightarrow A=0 \quad$ and $\quad k_{x}=\frac{m \pi}{a} \quad m=0,1,2, \ldots$
$\square e_{z}=B_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \quad$ and $\quad k_{c}^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}$

Therefore

$$
E_{z}(x, y, z)=B_{m n} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z}
$$

From the field table, we obtain the following:

$$
\begin{aligned}
& H_{x}=\frac{j \omega \varepsilon_{c} n \pi}{k_{c}^{2} b} B_{m n} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z} \\
& H_{y}=-\frac{j \omega \varepsilon_{c} m \pi}{k_{c}^{2} a} B_{m n} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z} \\
& E_{x}=-\frac{j k_{z} m \pi}{k_{c}^{2} a} B_{m n} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z} \\
& E_{y}=\frac{j k_{z} n \pi}{k_{c}^{2} b} B_{m n} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) e^{-j k_{z} z}
\end{aligned}
$$

$$
\begin{aligned}
k_{z} & =\left(k^{2}-k_{c}^{2}\right)^{1 / 2} \\
& =\left(k^{2}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}\right)^{1 / 2} \\
& k_{c}=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& m=1,2,3 \ldots \\
& n=1,2,3 \ldots
\end{aligned}
$$

Note:
If either m or n is zero, the field becomes a trivial one in the TM_{z} case.

Lossless case $\left(\varepsilon_{c}=\varepsilon=\varepsilon^{\prime}\right)$

$$
\begin{gathered}
k_{z}^{m n}=\sqrt{k^{2}-\left(k_{c}^{m n}\right)^{2}}=\sqrt{k^{2}-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}} \\
f_{c}^{m n}=\frac{1}{2 \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}
\end{gathered}
$$

(same as for TE modes)

The lowest cutoff frequency is obtained for the TM_{11} mode

$$
f_{c}^{11}=\frac{1}{2 \sqrt{\mu \varepsilon}} \sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}}
$$

Dominant TM mode (lowest f_{c})

Mode Chart

Lossless case $\left(\varepsilon_{c}=\varepsilon=\varepsilon^{\prime}\right)$

Two cases are considered:

Dominant Mode: TE_{10} Mode

For this mode we have

$$
m=1, n=0, k_{c}^{10}=\frac{\pi}{a}
$$

Hence we have

$$
\begin{aligned}
& \text { or this mode we have } \\
& m=1, n=0, k_{c}^{10}=\frac{\pi}{a} \\
& H_{z}=A_{10} \cos \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& H_{x}=\sum_{E_{z}}^{j \frac{k_{z} a}{\pi} A_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z}} \\
& E_{y}=\underbrace{-\frac{j \omega \mu a}{\pi} A_{10}}_{E_{10}} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& E_{x}=k_{z}^{10}=\left(k^{2}-\left(\frac{\pi}{a}\right)^{2}\right)^{1 / 2} \\
& E_{x}=E_{z}=H_{y}=0
\end{aligned}
$$

Dominant Mode: TE_{10} Mode (cont.)

The fields can be put in terms of E_{10} :

$$
\begin{aligned}
& E_{y}=E_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& H_{x}=-\frac{1}{Z_{T E}} E_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& H_{z}=\left(\frac{-\pi}{j \omega \mu a}\right) E_{10} \cos \left(\frac{\pi}{a} x\right) e^{-j k_{z} z}
\end{aligned}
$$

$$
E_{x}=E_{z}=H_{y}=0
$$

$$
\begin{gathered}
k_{z}=k_{z}^{10}=\left(k^{2}-\left(\frac{\pi}{a}\right)^{2}\right)^{1 / 2} \\
Z_{T E}=\frac{\omega \mu}{k_{z}}
\end{gathered}
$$

Dispersion Diagram for TE_{10} Mode

Lossless case $\left(\varepsilon_{c}=\varepsilon=\varepsilon^{\prime}\right)$

Phase velocity: $\quad v_{p}=\frac{\omega}{\beta}$
Group velocity: $\quad v_{g}=\frac{d \omega}{d \beta}$

Velocities are slopes on the dispersion plot.

Field Plots for TE_{10} Mode

Field Plots for TE_{10} Mode (cont.)

Note: One can cut a narrow z-directed slot in the center of the top wall without disturbing the current.

Power Flow for TE_{10} Mode

Time-average power flow in the z direction for $+z$ mode:

$$
\begin{aligned}
P_{10}^{+} & =\frac{1}{2} \operatorname{Re}\left\{\int_{0}^{a} \int_{0}^{b}\left(\underline{E} \times \underline{H}^{*}\right) \cdot \underline{\hat{z}} d y d x\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\int_{0}^{a} \int_{0}^{b}-E_{y} H_{x}^{*} d y d x\right\} \\
& =\frac{1}{2} \operatorname{Re}\left(\left(\frac{a b}{2}\right)\left|E_{10}\right|^{2}\left(\frac{k_{z}}{\omega \mu}\right) e^{-2 \alpha z}\right)
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \int_{0}^{a} \int_{0}^{b} \sin ^{2}\left(\frac{\pi x}{a}\right) d y d x=\frac{a b}{2} \\
& E_{y}=E_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{2} z} \\
& H_{x}=-\frac{1}{Z_{\text {TE }}} E_{10} \sin \left(\frac{\pi}{a} x\right) e^{-k_{x} z}
\end{aligned}
$$

Simplifying, we have

$$
Z_{T E}=\frac{\omega \mu}{k_{z}}
$$

$$
P_{10}^{+}=\left(\frac{a b}{4 \omega \mu}\right) \operatorname{Re}\left\{k_{z}\right\}\left|E_{10}\right|^{2} e^{-2 \alpha z}
$$

At breakdown:

$$
E_{10}=E_{c}
$$

Note:

For a given maximum electric field level (e.g., the breakdown field), the power is increased by increasing the cross-sectional area (ab).

Dielectric Attenuation for TE_{10} Mode

From Notes 7 we have:

$$
\begin{gathered}
f>f_{c} \\
k_{z}=\beta-j \alpha_{d}=\sqrt{k^{2}-k_{c}^{2}} \\
\beta=\operatorname{Re} \sqrt{k^{2}-k_{c}^{2}} \\
\alpha_{d}=-\operatorname{Im} \sqrt{k^{2}-k_{c}^{2}} \\
\beta \approx \sqrt{k_{0}^{2} \mu_{r} \varepsilon_{r}-k_{c}^{2}} \\
\alpha_{d} \approx \frac{k_{0}^{2} \mu_{r} \varepsilon_{r} \tan \delta_{d}}{2 \beta} \\
k=k^{\prime}-j k^{\prime \prime}=k_{0} \sqrt{\mu_{r} \varepsilon_{r}} \sqrt{1-j \tan \delta_{d}} \quad k_{c}=\frac{\pi}{a}
\end{gathered}
$$

Conductor Attenuation for TE_{10} Mode

$$
\begin{aligned}
& \text { Recall } \alpha_{c}=\frac{P_{l}(0)}{2 P_{0}} \\
& P_{l}(0)=\left.\frac{R_{s}}{2} \int_{C}\left|P_{0}\right|_{10}^{+}\right|_{z=0} ^{2} d \ell \\
& \underline{J}_{s}=\underline{\hat{n}} \times \underline{H} \text { on conductor } \\
& C=C^{\text {left }}+C^{\text {right }}+C^{\text {bot }}+C^{\text {top }}
\end{aligned}
$$

Conductor Attenuation for TE_{10} Mode

Side walls

@ $x=0: \underline{J}_{-}^{\text {left }}=\underline{\hat{x}} \times\left.\underline{H}\right|_{x=0}=-\underline{\hat{y}} H_{z}=-\underline{\hat{y}} A_{10} e^{-j k_{z} z}$
@ $x=a: \underline{S}_{s}^{\text {right }}=-\underline{\hat{x}} \times\left.\underline{H}\right|_{x=a}=\underline{\hat{y}} H_{z}=-\hat{y} A_{10} e^{-j k_{z} z}$

Hence:

$$
J_{s y}^{\text {left }}=J_{s y}^{\text {right }}=-A_{10} e^{-j k_{z} z}
$$

$$
\begin{aligned}
& H_{z}=A_{10} \cos \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& H_{x}=j \frac{k_{z} a}{\pi} A_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z}
\end{aligned}
$$

Conductor Attenuation for TE_{10} Mode (cont.)

Top and bottom walls
@ $y=0: \quad \underline{J}_{s}^{\text {bot }}=\underline{\hat{y}} \times\left.\underline{H}\right|_{y=0}$
(@) $y=b: \underline{J}_{-}^{\mathrm{top}}=-\underline{\hat{y}} \times\left.\underline{H}\right|_{y=b}$

$$
\underline{J}_{-}^{\mathrm{top}}=-\underline{J}_{\mathrm{S}}^{\mathrm{bot}}
$$

(The fields of this mode are independent of y.)

Hence:

$$
\begin{aligned}
& J_{s x}^{\text {bot }}=A_{10} \cos \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& J_{s z}^{\text {bot }}=-j \frac{k_{z} a}{\pi} A_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z}
\end{aligned}
$$

$$
\begin{aligned}
& H_{z}=A_{10} \cos \left(\frac{\pi}{a} x\right) e^{-j k_{z} z} \\
& H_{x}=j \frac{k_{z} a}{\pi} A_{10} \sin \left(\frac{\pi}{a} x\right) e^{-j k_{z} z}
\end{aligned}
$$

Conductor Attenuation for TE_{10} Mode (cont.)

We then have:

$$
\begin{aligned}
P_{l}(0) & =2\left(\left.\left.\frac{R_{s}}{2} \int_{0}^{b}\left|\underline{J}_{s}^{\text {left }}\right|^{2}\left|d y+\frac{R_{s}}{2} \int_{0}^{a}\right| \underline{J}_{s}^{\mathrm{bot}}\right|^{2} \right\rvert\, d x\right) \\
& =R_{s} \int_{0}^{b}\left|J_{s y}^{\text {left }}\right|^{2} \mid d y+R_{s} \int_{0}^{a}\left(\left|J_{s x}^{\mathrm{bot}}\right|^{2}+\left|J_{s z}^{\mathrm{bot}}\right|^{2}\right) d x \\
& =R_{s} \int_{0}^{b}\left|-A_{10}\right|^{2} \left\lvert\, d y+R_{s} \int_{0}^{a}\left(\left|A_{10} \cos \left(\frac{\pi}{a} x\right)\right|^{2}+\left|-j \frac{k_{z} a}{\pi} A_{10} \sin \left(\frac{\pi}{a} x\right)\right|^{2}\right) d x\right. \\
& =R_{s}\left|A_{10}\right|^{2}\left(\int_{0}^{b} d y+\int_{0}^{a} \cos ^{2}\left(\frac{\pi}{a} x\right) d x+\left(\frac{\left|k_{z}\right| a}{\pi}\right)^{2} \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} x\right) d x\right) \\
& =R_{s}\left|A_{10}\right|^{2}\left(b+\frac{a}{2}+\frac{\left|k_{z}\right|^{2} a^{2}}{\pi^{2}} \frac{a}{2}\right)
\end{aligned}
$$

Attenuation for TE_{10} Mode (cont.)

Assume $f>f_{c}$

$$
k_{z} \approx \beta
$$

(The wavenumber is taken as that of a guide with perfect walls.)

$$
P_{l}(0)=R_{s}\left|A_{10}\right|^{2}\left(b+\frac{a}{2}+\frac{\beta^{2} a^{3}}{2 \pi^{2}}\right)
$$

$$
P_{0}=(a b) \beta\left|E_{10}\right|^{2} \quad A_{10}=\frac{-\pi}{j \omega \mu a} E_{10}
$$

Simplify, using $\quad \beta^{2}=k^{2}-k_{c}^{2} \quad k_{c}^{10}=\frac{\pi}{a}$

$$
\alpha_{c}=\frac{P_{l}(0)}{2 P_{0}}
$$

Final result:

$$
\alpha_{c}=\frac{R_{s}}{a^{3} b \beta(k \eta)}\left(2 b \pi^{2}+a^{3} k^{2}\right)[\mathrm{np} / \mathrm{m}]
$$

Attenuation for TE_{10} Mode (cont.)

Final Formulas

Two alternative forms for the final result:

$$
\alpha_{c}=\frac{R_{s}}{a^{3} b \beta(k \eta)}\left(2 b \pi^{2}+a^{3} k^{2}\right) \quad[\mathrm{np} / \mathrm{m}]
$$

$$
\alpha_{c}=\frac{R_{s}}{b \eta} \frac{1}{\sqrt{1-\left(f_{c} / f\right)^{2}}}\left(1+\frac{2 b}{a}\left(\frac{f_{c}}{f}\right)^{2}\right)[\mathrm{np} / \mathrm{m}]
$$

Attenuation for TE_{10} Mode (cont.)

Brass X-band air-filled waveguide

$$
\left(\sigma \approx 2.6 \times 10^{7}[\mathrm{~S} / \mathrm{m}]\right)
$$

X band: 8-12 [GHz]
(See the table on the next slide.)

$$
a=2.0 \mathrm{~cm}
$$

(from the Pozar book)

Attenuation for TE_{10} Mode (cont.)

Microwave Frequency Bands	
Letter Designation	Frequency range
L band	1 to 2 GHz
S band	2 to 4 GHz
C band	4 to 8 GHz
X band	8 to 12 GHz
Ku band	12 to 18 GHz
K band	18 to 26.5 GHz
Ka band	26.5 to 40 GHz
Q band	33 to 50 GHz
U band	40 to 60 GHz
V band	50 to 75 GHz
E band	60 to 90 GHz
W band	75 to 110 GHz
F band	90 to 140 GHz
D band	110 to 170 GHz

(from Wikipedia)

Modes in an X-Band Waveguide

$$
\begin{aligned}
& a=2.29 \mathrm{~cm}(0.90 \mathrm{in}) \\
& b=1.02 \mathrm{~cm}(0.40 \mathrm{in})
\end{aligned}
$$

"Standard X-band waveguide" (WR90)

Mode	$\boldsymbol{f}_{\boldsymbol{c}}[\mathrm{GHz}]$
TE_{10}	6.55
TE_{20}	13.10
TE_{01}	14.71
TE_{11}	16.10
TM_{11}	16.10
TE_{30}	19.65
TE_{21}	19.69
TM_{21}	19.69

X band: 8-12 [GHz]

50 mil (0.05") thickness

Example: X-Band Waveguide

Determine β, α, and λ_{g} (as appropriate) at 10 GHz and 6 GHz for the TE_{10} mode in a lossless air-filled X -band waveguide.

@ 10 GHz

$$
\begin{gathered}
\beta=\sqrt{\omega^{2} \mu \varepsilon-\left(\frac{\pi}{a}\right)^{2}}=\sqrt{\left(\frac{2 \pi 10^{10}}{2.99792458 \times 10^{8}}\right)^{2}-\left(\frac{\pi}{0.0229}\right)^{2}} \\
\beta=158.25[\mathrm{rad} / \mathrm{m}]
\end{gathered}
$$

$$
\begin{aligned}
\lambda_{g}=\frac{2 \pi}{\beta}=\frac{2 \pi}{158.25}= & 0.0397 \\
& \lambda_{g}=3.97[\mathrm{~cm}]
\end{aligned}
$$

$$
\text { Lossless: } k=\frac{2 \pi}{\lambda_{d}}=\frac{2 \pi}{c_{d} / f}=\frac{2 \pi f}{c_{d}}=\frac{\omega}{c_{d}}=\omega \sqrt{\mu \varepsilon}=2 \pi f \sqrt{\mu \varepsilon}
$$

Example: X-Band Waveguide (cont.)

@ 6 GHz

$$
\begin{aligned}
k_{z}=\left(\omega^{2} \mu \varepsilon-\left(\frac{\pi}{a}\right)^{2}\right)^{1 / 2} & =\left(\left(\frac{2 \pi 6 \times 10^{9}}{2.99792458 \times 10^{8}}\right)^{2}-\left(\frac{\pi}{0.0229}\right)^{2}\right)^{1 / 2} \\
& =-j \sqrt{\left(\frac{\pi}{0.0229}\right)^{2}-\left(\frac{2 \pi 6 \times 10^{9}}{2.99792458 \times 10^{8}}\right)^{2}} \\
& =-j 55.04[1 / \mathrm{m}] \\
& \alpha=55.04[\mathrm{np} / \mathrm{m}] \\
\lambda_{g}=\frac{2 \pi}{\beta} & =478.08[\mathrm{~dB} / \mathrm{m}]
\end{aligned}
$$

$$
=-j \sqrt{\left(\frac{\pi}{0.0229}\right)^{2}-\left(\frac{2 \pi 6 \times 10^{9}}{2.99792458 \times 10^{8}}\right)^{2}}
$$

Fields of a Guided Wave

Fields Equations in Cylindrical Coordinates

$$
\begin{aligned}
& H_{\rho}=\frac{j}{k_{c}^{2}}\left(\frac{\omega \varepsilon_{c}}{\rho} \frac{\partial E_{z}}{\partial \phi} \mp k_{z} \frac{\partial H_{z}}{\partial \rho}\right) \\
& H_{\phi}=\frac{-j}{k_{c}^{2}}\left(\omega \varepsilon_{c} \frac{\partial E_{z}}{\partial \rho} \pm \frac{k_{z}}{\rho} \frac{\partial H_{z}}{\partial y}\right) \\
& E_{\rho}=\frac{-j}{k_{c}^{2}}\left(\pm k_{z} \frac{\partial E_{z}}{\partial \rho}+\frac{\omega \mu}{\rho} \frac{\partial H_{z}}{\partial \phi}\right) \\
& E_{\phi}=\frac{j}{k_{c}^{2}}\left(\mp \frac{k_{z}}{\rho} \frac{\partial E_{z}}{\partial \phi}+\omega \mu \frac{\partial H_{z}}{\partial \rho}\right)
\end{aligned}
$$

These are useful for a circular waveguide.

These equations give the transverse field components in terms of the longitudinal components, E_{z} and H_{z}.

$$
\begin{gathered}
F(z)=e^{\mp j k_{z} z} \\
k^{2}=\omega^{2} \mu \varepsilon_{c} \\
k_{c}=\sqrt{k^{2}-k_{z}^{2}}
\end{gathered}
$$

Circular Waveguide

TM ${ }_{z}$ mode:
$\nabla^{2} e_{z}(\rho, \phi)=-k_{c}^{2} e_{z}(\rho, \phi)$
(eigenvalue problem)
$k_{z}^{2}=k^{2}-k_{c}^{2}$

The solution in cylindrical coordinates is:
This means any combination of these two functions.

$$
e_{z}(\rho, \phi)=\left\{\begin{array}{c}
J_{n}\left(k_{c} \rho\right) \\
Y_{n}\left(k_{c} \rho\right)
\end{array}\right\}\left\{\begin{array}{c}
\sin (n \phi) \\
\cos (n \phi)
\end{array}\right\}
$$

Note: The value n must be an integer to have unique fields.
$J_{n}(x)=$ Bessel function of the first kind of order n
$Y_{n}(x)=$ Bessel function of the second kind of order n

References:

- M. R. Spiegel, Schaum's Outline Mathematical Handbook, McGraw-Hill, 1968.
- M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Government Printing Office, Tenth Printing, 1972.
- N. N. Lebedev, Special Functions \& Their Applications, Dover Publications, New York, 1972.

Plot of Bessel Functions

$$
J_{n}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right), \quad x \rightarrow \infty \quad J_{n}(x) \sim x^{n}\left(\frac{1}{2^{n} n!}\right) \quad n=0,1,2, \ldots ., \quad x \rightarrow 0
$$

Plot of Bessel Functions (cont.)

$Y_{n}(x)$
$Y_{n}(0)$ is infinite

$$
Y_{n}(x) \sim \sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{n \pi}{2}-\frac{\pi}{4}\right), x \rightarrow \infty
$$

$$
\begin{aligned}
& Y_{0}(x) \sim \frac{2}{\pi}\left[\ln \left(\frac{x}{2}\right)+\gamma\right], \gamma=0.5772156, x \rightarrow 0 \\
& Y_{n}(x) \sim-\frac{1}{\pi}(n-1)!\left(\frac{2}{x}\right)^{n}, n=1,2,3, \ldots \ldots, x \rightarrow 0
\end{aligned}
$$

Circular Waveguide (cont.)

Choose (somewhat arbitrarily) $\cos (n \phi)$

$$
e_{z}(\rho, \phi)=\left\{\begin{array}{l}
J_{n}\left(k_{c} \rho\right) \\
Y_{n}\left(k_{c} \rho\right)
\end{array}\right\} \cos (n \phi)
$$

The field should be finite on the z axis.
$\Rightarrow Y_{n}\left(k_{c} \rho\right)$ is not allowed

Hence, we have

$$
e_{z}(\rho, \phi)=\cos (n \phi) J_{n}\left(k_{c} \rho\right)
$$

$$
E_{z}(\rho, \phi, z)=\cos (n \phi) J_{n}\left(k_{c} \rho\right) e^{-j k_{z} z}
$$

Circular Waveguide (cont.)

$$
\text { B.C.'s: } \quad E_{z}(a, \phi, z)=0 \quad \text { Hence } \quad J_{n}\left(k_{c} a\right)=0
$$

Note: The value $x_{n 0}=0$ is not included since this would yield a trivial solution:

$$
J_{n}\left(x_{n 0} \frac{\rho}{a}\right)=J_{n}(0)=0
$$

Circular Waveguide (cont.)

$\mathrm{TM}_{\text {np }}$ mode:

$$
E_{z}(\rho, \phi, z)=\cos (n \phi) J_{n}\left(x_{n p} \frac{\rho}{a}\right) e^{-j k_{z} z} \quad n=0,1,2 \ldots
$$

$$
k_{z}=\sqrt{k^{2}-\left(\frac{x_{n p}}{a}\right)^{2}} \quad p=1,2,3, \ldots \ldots \ldots
$$

Cutoff Frequency: TM $_{z}$

$$
k_{z}^{2}=k^{2}-k_{c}^{2} \quad \text { Assume } k \text { is real here. }
$$

$$
\begin{aligned}
\text { At } f=f_{c}: k_{z}=0 & \longleftrightarrow k=k_{c}=\frac{x_{n p}}{a} \\
& 2 \pi f_{c}^{\mathrm{TM}} \sqrt{\mu \varepsilon}=\frac{x_{n p}}{a} \\
& f_{c}^{\mathrm{TM}}=\left(\frac{c_{d}}{2 \pi a}\right) x_{n p} \quad c_{d} \equiv \frac{c}{\sqrt{\varepsilon_{r}}}
\end{aligned}
$$

Cutoff Frequency: TM_{z} (cont.)

$x_{n p}$ values

$p \backslash n$	0	1	2	3	4	5
1	2.405	3.832	5.136	6.380	7.588	8.771
2	5.520	7.016	8.417	9.761	11.065	12.339
3	8.654	10.173	11.620	13.015	14.372	
4	11.792	13.324	14.796			

$\mathrm{TM}_{01}, \mathrm{TM}_{11}, \mathrm{TM}_{21}, \mathrm{TM}_{02}, \ldots \ldots$.

Proceeding as before, we now have that

$$
H_{z}(\rho, \phi, z)=\cos (n \phi) J_{n}\left(k_{c} \rho\right) e^{-j k_{z} z}
$$

Set $E_{\phi}(a, \phi, z)=0$

$$
\left(H_{\rho}=\left.0\right|_{\rho=a}\right)
$$

$$
E_{\phi}=\frac{1}{j \omega \varepsilon_{c}}\left(\frac{\partial \mu_{\rho}}{\partial z}-\frac{\partial H_{z}}{\partial \rho}\right) \quad \text { (From Ampere's law) }
$$

$$
\Rightarrow \frac{\partial H_{z}}{\partial \rho}=\left.0\right|_{\rho=a}
$$

Hence $J_{n}^{\prime}\left(k_{c} a\right)=0$

The prime denotes derivative with respect to the argument.

$$
J_{n}^{\prime}\left(k_{c} a\right)=0
$$

$$
H_{z}(\rho, \phi, z)=\cos (n \phi) J_{n}\left(x_{n p}^{\prime} \frac{\rho}{a}\right) e^{-j k_{z} z} \quad p=1,2, \ldots
$$

Note: If $p=0$, then $x_{n p}^{\prime}=0$

We then have, for $p=0$:

$$
\begin{array}{ll}
n \neq 0 & J_{n}\left(x_{n p}^{\prime} \frac{\rho}{a}\right)=J_{n}(0)=0 \\
n=0 & J_{0}\left(x_{n p}^{\prime} \frac{\rho}{a}\right)=J_{0}(0)=1
\end{array}
$$

$\Rightarrow H_{z}=e^{-j k_{z} z} \Rightarrow \underline{H}=\underline{\hat{z}} e^{-j k_{z} z} \Rightarrow \underline{H}=\underline{\hat{z}} e^{-j k z} \quad$ (nonphysical solution) (violates the magnetic Gauss law)

The TE_{00} mode is not physical.

Circular Waveguide (cont.)

TE ${ }_{n p}$ mode:

$$
H_{z}(\rho, \phi, z)=\cos (n \phi) J_{n}\left(x_{n p}^{\prime} \frac{\rho}{a}\right) e^{-j k_{z} z} \quad n=0,1,2 \ldots
$$

$$
k_{z}=\sqrt{k^{2}-\left(\frac{x_{n p}^{\prime}}{a}\right)^{2}} \quad p=1,2,3, \ldots \ldots \ldots
$$

Cutoff Frequency: TE_{z}

$$
\begin{aligned}
& k_{z}^{2}=k^{2}-k_{c}^{2} \quad \text { Assume } k \text { is real here. } \\
& k_{z}=0 \\
& 2 \pi f_{c}^{T E} \sqrt{\mu \varepsilon}=\frac{x_{n p}^{\prime}}{a}
\end{aligned}
$$

Hence

$$
f_{c}^{T E}=\left(\frac{c_{d}}{2 \pi a}\right) x_{n p}^{\prime} \quad c_{d}=\frac{c}{\sqrt{\varepsilon_{r}}}
$$

Cutoff Frequency: TE_{z}
$x^{\prime}{ }_{n p}$ values

$p \backslash n$	0	1	2	3	4	5
1	3.832	1.841	3.054	4.201	5.317	5.416
2	7.016	5.331	6.706	8.015	9.282	10.520
3	10.173	8.536	9.969	11.346	12.682	13.987
4	13.324	11.706	13.170			

$T E_{11}, \mathrm{TE}_{21}, \mathrm{TE}_{01}, \mathrm{TE}_{31}, \ldots \ldots .$.

The dominant mode of circular waveguide is the TE_{11} mode.

Electric field
Magnetic field

TE_{10} mode of rectangular waveguide

$T E_{11}$ mode of circular waveguide

The $T E_{11}$ mode can be thought of as an evolution of the TE_{10} mode of rectangular waveguide as the boundary changes shape.

TE_{11} Mode (cont.)

The attenuation due to conductor loss for the TE_{11} mode is:

$$
\alpha_{c}=\frac{R_{s}}{a \eta} \frac{1}{\sqrt{1-\left(f_{c} / f\right)^{2}}}\left(\left(\frac{f_{c}}{f}\right)^{2}+\frac{1}{x_{11}^{\prime 2}-1}\right)
$$

$$
x_{11}^{\prime}=1.841
$$

$$
k_{c}=\frac{x_{11}^{\prime}}{a}
$$

The derivation is in the Pozar book (see Eq. 3.133).

The TE_{01} mode of circular waveguide has the unusual property that the conductor attenuation decreases with frequency. (With most waveguide modes, the conductor attenuation increases with frequency.)

$$
\alpha_{c}^{\mathrm{TE}_{01}}=\frac{R_{s}}{a \eta} \frac{\left(f_{c} / f\right)^{2}}{\sqrt{1-\left(f_{c} / f\right)^{2}}}
$$

Reason: This mode has current only in the ϕ direction, and this component of current (corresponding to H_{z}) decreases as the frequency increases (for a fixed power flow down the guide, i.e., a fixed E_{ϕ}). (Please see the equations on the next slide.)

The TE_{01} mode was studied extensively as a candidate for long-range communications - but eventually fiber-optic cables became available with even lower loss. It is still useful for some high-power applications.

Note: This mode is not the dominant mode!

TE_{01} Mode (cont.)

The fields of the TE_{01} mode are:

$$
\begin{aligned}
& H_{z}=J_{0}\left(x_{01}^{\prime} \frac{\rho}{a}\right) e^{-j k_{z} z} \\
& E_{\phi}=j \omega \mu\left(\frac{x_{01}^{\prime}}{a}\right) \frac{1}{k_{c}^{2}} J_{0}^{\prime}\left(x_{01}^{\prime} \frac{\rho}{a}\right) e^{-j k_{z} z} \\
& H_{\rho}=-E_{\phi} / Z_{T E}^{(0,1)} \\
& Z_{T E}^{(0,1)}=\frac{\omega \mu}{k_{z}^{(0,1)}}
\end{aligned}
$$

Note: The attenuation increases at high frequency for all other modes, due to R_{s}.

TE_{01} Mode (cont.)

Practical Note:

The TE_{01} mode has only an azimuthal (ϕ-directed) surface current on the wall of the waveguide. Therefore, it can be supported by a set of conducting rings, while the lower modes $\left(\mathrm{TE}_{11}, \mathrm{TM}_{01}, \mathrm{TE}_{21}, \mathrm{TM}_{11}\right)$ will not propagate on such a structure.

(A helical spring will also work fine.)

TE_{01} Mode (cont.)

VertexRSI's Torrance Facility is a leading supplier of antenna feed components for the various commercial and military bands. A patented circular polarized 4-port diplexer meeting all Intelsat specifications leads a full array of products.

Products include:
4-Port Diplexers, CP or Linear;
3-Port Diplexers, 2xRx \& 1xTx;
2-Port Diplexers, RxTx, X-Pol or Co-Pol, CP or Linear;
TE21 Monopulse Tracking Couplers;
TE01 Mode Components; Transitions;
Filters; Flex Waveguides;
Waveguide Bends; Twists; Runs; etc.
Many of the items are "off the shelf products".
Products can be custom tailored to a customer's application.

Many of the products can be supplied with standard feed horns for prime or offset antennas.

TE_{01} Mode (cont.)

From the beginning, the most obvious application of waveguides had been as a communications medium. It had been determined by both Schelkunoff and Mead, independently, in July 1933, that an axially symmetric electric wave (TE_{01}) in circular waveguide would have an attenuation factor that decreased with increasing frequency [44]. This unique characteristic was believed to offer a great potential for wide-band, multichannel systems, and for many years to come the development of such a system was a major focus of work within the waveguide group at BTL. It is important to note, however, that the use of waveguide as a long transmission line never did prove to be practical, and Southworth eventually began to realize that the role of waveguide would be somewhat different than originally expected. In a memorandum dated October 23, 1939, he concluded that microwave radio with highly directive antennas was to be preferred to long transmission lines. "Thus," he wrote, "we come to the conclusion that the hollow, cylindrical conductor is to be valued primarily as a new circuit element, but not yet as a new type of toll cable" [45]. It was as a circuit element in military radar that waveguide technology was to find its first major application and to receive an enormous stimulus to both practical and theoretical advance.
K. S. Packard, "The origins of waveguide: A case of multiple rediscovery," IEEE Trans. Microwave Theory and Techniques, pp. 961-969, Sept. 1984.

TE_{01} Mode (cont.)

"In a memorandum dated October 23, 1939, he concluded that microwave radio with highly directive antennas was to be preferred to long transmission lines."

Recall the comparison of dB attenuation:

Waveguiding system: $\mathrm{dB}=8.686(\alpha \mathrm{z})$
Wireless system: $\mathrm{dB}=-10 \log _{10}\left(G_{t} G_{r}\right)-20 \log _{10}\left(\frac{\lambda_{0}}{4 \pi}\right)+20 \log _{10}(r)$

