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Adapted from notes by 
Prof. Jeffery T. Williams 



  One of the earliest waveguides. 

 Still common for high power and low-
loss microwave / millimeter-wave 
applications. 

Rectangular Waveguide 

 It is essentially an electromagnetic pipe  
  with a rectangular cross-section. 

Single conductor ⇒ No TEM mode 

For convenience: 

  a  ≥ b (the long dimension lies along  x). 
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Rectangular Waveguide (cont.) 
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Two types of modes: 

TEz  , TMz 

( )1/22 2
z ck k k= −

( )0 1 tanc r dk k jω µε ε δ= = −

2 2

2 2

:

:

c z c

c z c

f f k k k

f f k j k k

> = −

< = − −

We need to solve for kc. 

The cutoff wavenumber kc is real. 



( )
2 2

2
2 2 , 0c zk h x y

x y
 ∂ ∂

+ + = ∂ ∂ 

For +z propagation:  

( ) ( ), , , zjk z
z zH x y z h x y e−=

where 

0 0z
x

HE
y

∂
= ⇒ =

∂

Subject to B.C.’s: 

0 0z
y

HE
x

∂
= ⇒ =

∂

@ 0,y b=

@ 0,x a=

TEz Modes 

( )1/22 2
c zk k k≡ −
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2

2

z z
x z

c

z z
y z

c

E HjE k
k x y

E HjE k
k y x

ωµ

ωµ

 ∂ ∂−
= + ∂ ∂ 

 ∂ ∂
= − + ∂ ∂ 

From previous field table: 
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z a

b

PEC

, ,ε µ σ



( ) ( )
2 2

2
2 2 , ,z c zh x y k h x y

x y
 ∂ ∂

+ = − ∂ ∂ 

Using separation of variables, let ( ) ( ) ( ),zh x y X x Y y=

2 2
2

2 2 c
d X d YY X k XY
dx dy

⇒ + = −

2 2
2

2 2

1 1
c

d X d Y k
X dx Y dy

⇒ + = −

2 2
2 2

2 2

1 1
x y

d X d Yk k
X dx Y dy

⇒ = − = −and

Must be a constant 

where “separation equation” 

TEz Modes (cont.) 

2 2 2
x y ck k k+ =

(eigenvalue problem) 

5 

(If we take one term across the equal sign, we 
have a function of x equal to a function of y.) 

This is the 
“separation 
equation”. 



Hence, 

( )
( ) ( )

, ( cos sin )( cos sin )
X x Y y

z x x y yh x y A k x B k x C k y D k y= + +


Boundary Conditions: 
0zh

y
∂

=
∂

0zh
x

∂
=

∂

@ 0,y b=

@ 0,x a=

0 0,1,2,...y
nD k n
b
π

⇒ = = =and

0 0,1,2,...x
mB k m
a
π

⇒ = = =and

( )
2 2

2, cos cosz mn c
m x n y m nh x y A k

a b a b
π π π π       = = +       

       
and

B 

A 

A 

B 

TEz Modes (cont.) 
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Therefore,           

( ), , cos cos zjk z
z mn

m nH x y z A x y e
a b
π π −   =    

   

( )1/22 2

1/22 2
2

z ck k k

m nk
a b
π π

= −

    = − −         

2

2

2

2

cos sin

sin cos

sin cos

cos sin

z

z

z

z

jk z
x mn

c

jk z
y mn

c

jk zz
x mn

c

jk zz
y mn

c

j n m nE A x y e
k b a b
j m m nE A x y e

k a a b
jk m m nH A x y e
k a a b

jk n m nH A x y e
k b a b

ωµ π π π

ωµ π π π

π π π

π π π

−

−

−

−

   =    
   

   = −    
   

   =    
   

   =    
   

From the field table, we obtain the following: 

But  m = n = 0 
is not allowed! 

(non-physical solution) 

Note: 

00ˆ ; 0jkzH z A e H−= ∇ ⋅ ≠
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TEz Modes (cont.) 

2 2

c
m nk
a b
π π   = +   

   

0,1,2,
0,1,2,

m
n

=
=
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TEz Modes (cont.) 
Reason for non-physical solution 

( ) 2 0H k H∇× ∇× − = Vector wave equation: from Maxwell’s equations. 

Take divergence of both sides. 

Magnetic Gauss law 

( )( ) 2 0H k H∇ ⋅ ∇× ∇× − ∇ ⋅ = The divergence of a curl is zero. 

0H∇ ⋅ =

Start with the vector wave equation: 
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TEz Modes (cont.) 

Revisit how we obtained the vector Helmholtz equation: 

( ) 2 0H k H∇× ∇× − =

0H∇ ⋅ =

Vector wave equation: from Maxwell’s equations. 

( ) 2 2 0
H

H H k H
∇×∇×

∇ ∇ ⋅ − ∇ − =


From definition of vector Laplacian 

Magnetic Gauss law 

2 2 0H k H∇ + = Vector Helmholtz equation (what we have solved) 

Now use: 

Reason for non-physical solution 

A needed assumption! 
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TEz Modes (cont.) 
Reason for non-physical solution 

Vector wave equation   ⇒  magnetic Gauss law 

The vector Helmholtz equation does not guarantee that the magnetic Gauss 
law is satisfied. In the mathematical derivation, we need to assume the 
magnetic Gauss law in order to arrive at the vector Helmholtz equation.  

Note: The TE00 mode is the only one that violates the magnetic Gauss law.  

Vector Helmholtz equation ⇒ magnetic Gauss law 

All of the modes that we get by solving the Helmholtz equation should be 
checked to make sure that they do satisfy the magnetic Gauss law. 



( )( )
1/22 21/222 2mn mn

z c
m nk k k k
a b
π π    = − = − −         

 ⇒  TEmn mode is at cutoff when mn
ck k=

Lossless case 

2 21
2

mn
c

m nf
a bµε

   = +   
   

Lowest cutoff frequency is  for TE10 mode  (a > b) 

10 1
2cf a µε

= Dominant TE mode 
(lowest fc) 

We will 
revisit this 
mode later. 

( )cε ε ε ′= =
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TEz Modes (cont.) 

( )mn
ck ω µε=



At the cutoff frequency of the TE10 mode (lossless waveguide): 

10 21
2

d d d
d

c

c c c a
f f

a

λ

µε

= = = =
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TEz Modes (cont.) 

so 

/ 2
c

d f f
a λ

=
=



To have propagation: 

cf f>

Example:  Air-filled waveguide,  f  = 10 GHz.  We have that a > 3.0 cm / 2 = 1.5 cm. 
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TEz Modes (cont.) 

so 1
2

f
a µε

>

1 1
2 22

d dca
ff

λ
µε

> = =

2
da λ

>

or 

or 



Recall: 

( ) ( ), , , zjk z
z zE x y z e x y e−=

where 

( ) ( )
2 2

2
2 2 , ,z c ze x y k e x y

x y
 ∂ ∂

+ = − ∂ ∂  ( )1/22 2
c zk k k= −

Subject to B.C.’s:              0zE = @ 0,x a=

@ 0,y b=

Thus, following same procedure as before, we have the following result: 

TMz Modes 

(eigenvalue problem) 
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( )
( ) ( )

, ( cos sin )( cos sin )
X x Y y

z x x y ye x y A k x B k x C k y D k y= + +


Boundary Conditions: 0ze = @ 0,y b=

@ 0,x a=

0 0,1,2,...y
nC k n
b
π

⇒ = = =and

0 0,1,2,...x
mA k m
a
π

⇒ = = =and

2 2
2sin sinz mn c

m n m ne B x y k
a b a b
π π π π       = = +       

       
and

B 

A 

A 

B 

TMz Modes (cont.) 
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Therefore 

( ), , sin sin zjk z
z mn

m nE x y z B x y e
a b
π π −   =    

   

2

2

2

2

sin cos

cos sin

cos sin

sin cos

z

z

z

z

jk zc
x mn

c

jk zc
y mn

c

jk zz
x mn

c

jk zz
y mn

c

j n m nH B x y e
k b a b
j m m nH B x y e

k a a b
jk m m nE B x y e
k a a b

jk n m nE B x y e
k b a b

ωε π π π

ωε π π π

π π π

π π π

−

−

−

−

   =    
   

   = −    
   

   = −    
   

   =    
   

From the field table, we obtain the following: 

Note:  
If either m or n is zero, the 

field becomes a trivial one in 
the TMz case. 
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TMz Modes (cont.) 

1,2,3
1,2,3

m
n

=
=





( )1/22 2

1/22 2
2

z ck k k

m nk
a b
π π

= −

    = − −         
2 2

c
m nk
a b
π π   = +   

   



2 21
2

mn
c

m nf
a bµε

   = +   
   

The lowest cutoff frequency is obtained for the TM11 mode       

2 2
11 1 1 1

2cf a bµε
   = +   
   

(same as for  
TE modes) 

Lossless case ( )cε ε ε ′= =

( )
2 2

22 2mn mn
z c

m nk k k k
a b
π π   = − = − −   

   

Dominant TM mode 
(lowest fc) 
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TMz Modes (cont.) 



The maximum bandwidth for 
single-mode operation is 67%. 

( )/ 2b a≤

10TE 01TE 11TE
11TM

b < a / 2 

f 
20TE10TE

Single mode operation 

10TE 20TE
11TE
11TM

b > a / 2 

f 
Single mode operation 

10TE 01TE

Mode Chart 

Two cases are considered: 

2 21
2

mn
c

m nf
a bµε

   = +   
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Lossless case ( )cε ε ε ′= =

x

y

z a

b

PEC

, ,ε µ σ

2 1

0

BW f f
f
−

≡

0f =center frequency



Dominant Mode: TE10 Mode 
For this mode we have                                                    

10 cos zjk z
zH A x e

a
π − =  

 

10 sin zjk zz
x

k aH j A x e
a
π

π
− =  

 

10

10 sin zjk z
y

E

j aE A x e
a

ωµ π
π

− = −  
 



1/22
10 2

z zk k k
a
π  = = −     

10 10A E
j a

π
ωµ
−

≡
0x z yE E H= = =

101, 0, cm n k
a
π

= = =

Hence we have                                                    

10 sin zjk z
yE E x e

a
π − =  
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Dominant Mode: TE10 Mode (cont.) 

10 cos zjk z
zH E x e

j a a
π π

ωµ
− −  =      

10
1 sin zjk z

x
TE

H E x e
Z a

π − = −  
 

0x z yE E H= = =

10 sin zjk z
yE E x e

a
π − =  

 

20 

x

y

z a

b

PEC

, ,ε µ σ

The fields can be put in terms of E10: 

TE
z

Z
k

ωµ
=

1/22
10 2

z zk k k
a
π  = = −     



2
2

2 2

zk k
a

k

πβ

ω µε

 = = −  
 

=

Phase velocity: 

Group velocity: g
dv
d

ω
β

=

1
µε

ω

10
cω

β

pv = slope

pv ω
β

=

Dispersion Diagram for TE10 Mode 

Lossless case ( )cε ε ε ′= =

cf f>

(TEMz mode, or “Light line”) 

Velocities are slopes on 
the dispersion plot. 

gv = slope

21 

kβ ω µε= =



Top view 

E
H

End view Side view 

Field Plots for TE10 Mode 
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Top view 

sJ
H

End view Side view 

Field Plots for TE10 Mode (cont.) 
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x
z a

y

x
a

b

z

y

b

x

y
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b
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, ,ε µ σ

Note: One can cut a narrow z-directed slot in the center of the top wall without disturbing the current. 



Time-average power flow in the z direction for +z mode: 

( )*
10

0 0

*

0 0

2 2
10

1 ˆRe
2

1 Re
2

1 Re
2 2

a b

a b

y x

zz

P E H z dydx

E H dydx

ab kE e α

ωµ

+

−

 
= × ⋅ 

 
 

= − 
 
   =         

∫ ∫

∫ ∫

Simplifying, we have 

{ } 2 2
10 10Re

4
z

z
abP k E e α

ωµ
+ − 

=  
 

Note:  
For a given maximum electric field level (e.g., the 

breakdown field), the power is increased by increasing the 
cross-sectional area (ab). 

Power Flow for TE10 Mode 

2

0 0

sin
2

a b x abdydx
a

π  = 
 ∫ ∫

Note: 
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10 sin zjk z
yE E x e

a
π − =  

 

10
1 sin zjk z

x
TE

H E x e
Z a

π − = −  
 

TE
z

Z
k

ωµ
=

At breakdown: 

10 cE E=



From Notes 7 we have:  
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Dielectric Attenuation for TE10 Mode 

2 2

2 2

2 2

2 2
0

2
0

Re

Im

tan
2

z d c

c

d c

r r c

r r d
d

k j k k

k k

k k

k k

k

β α

β

α

β µ ε

µ ε δα
β

= − = −

= −

= − −

≈ −

≈

0 1 tanr r dk k jk k jµ ε δ′ ′′= − = − ck
a
π

=

cf f>



Recall 
0

(0)
2
l

c
P

P
α =

2(0)
2

s
l s

C

RP J d= ∫ 

0 10 0z
P P+

=
= (calculated on previous slide) 

ˆsJ n H= × on conductor 

Conductor Attenuation for TE10 Mode 
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left right bot topC C C C C= + + +

x

y

z a

b

sR

Lossless 



Side walls 

left
100

right
10

ˆ ˆ ˆ@ 0 :

ˆ ˆ ˆ@ :

z

z

jk z
s zx

jk z
s zx a

x J x H yH yA e

x a J x H yH yA e

−
=

−
=

= = × =− = −

= = − × = = −

Conductor Attenuation for TE10 Mode 

left right
10

zjk z
sy syJ J A e−= = −
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10

10

cos

sin

z

z

jk z
z

jk zz
x

H A x e
a

k aH j A x e
a

π

π
π

−

−

 =  
 

 =  
 

x

y

z a

b

sR

Lossless 

Hence: 



Top and bottom walls 
bot

0

top

ˆ@ 0 :

ˆ@ :

s y

s y b

y J y H

y b J y H
=

=

= = ×

= = − ×

(The fields of this mode are independent of y.) 

Conductor Attenuation for TE10 Mode (cont.) 

top bot
s sJ J= −

10

10

cos

sin

z

z

jk z
z

jk zz
x

H A x e
a

k aH j A x e
a

π

π
π

−

−

 =  
 

 =  
 

bot
10

bot
10

cos

sin

z

z

jk z
sx

jk zz
sz

J A x e
a

k aJ j A x e
a

π

π
π

−

−

 =  
 

 = −  
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Hence: 

x

y

z a

b

sR

Lossless 



( )

2 2left bot

0 0

2 2 2left bot bot

0 0

2 2
2

10 10 10
0 0

2
2 2 2

10

(0) 2
2 2

cos sin

cos sin

b a
s s

l s s

b a

s sy s sx sz

b a
z

s s

z
s

R RP J dy J dx

R J dy R J J dx

k aR A dy R A x j A x dx
a a

k a
R A dy x dx x

a a

π π
π

π π
π

 
= + 

 

= + +

    = − + + −         

    = + +     
    

∫ ∫

∫ ∫

∫ ∫

0 0 0

2 2
2

10 22 2

b a a

z
s

dx

k aa aR A b
π

 
 
 
 
 

= + +  
 

∫ ∫ ∫

Conductor Attenuation for TE10 Mode (cont.) 
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We then have: 

x

y

z a

b

sR

Lossless 



2 3
2

10 2(0)
2 2l s
a aP R A b β

π
 

= + + 
 

( ) ( )2 3 2
3 2 [np/m]s

c
R b a k

a b k
α π

β η
= +

Attenuation for TE10 Mode (cont.) 

2
0 104

abP Eβ
ωµ

 
=  

 

0

(0)
2
l

c
P

P
α =

Simplify, using 2 2 2
ck kβ = − 10

ck
a
π

=

Final result: 

Assume  f  > fc 

zk β≈ (The wavenumber is taken as that 
of a guide with perfect walls.) 

30 

10 10A E
j a

π
ωµ
−

=

x

y

z a

b

sR

Lossless 



( ) ( )2 3 2
3 2 [np/m]s

c
R b a k

a b k
α π

β η
= +

Attenuation for TE10 Mode (cont.) 
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x

y

z a

b

sR

Lossless 

( )

2

2

1 21 [np/m]
1 /

s c
c

c

R fb
b a ff f

α
η

  
= +    −  

Two alternative forms for the 
final result: 

Final Formulas 



Attenuation for TE10 Mode (cont.) 

( )72.6 10 [S/m]σ ≈ ×

Brass X-band  air-filled waveguide 

X : 8 12 [GHz]−band
(See the table on the next  slide.) 
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a = 2.0 cm 

(from the Pozar book) 



Attenuation for TE10 Mode (cont.) 
Microwave Frequency Bands 

Letter Designation Frequency range 
L band 1  to 2 GHz 

S band 2  to 4 GHz 

C band 4  to 8 GHz 

X band 8  to 12 GHz 

Ku band 12  to 18 GHz 

K band 18  to 26.5 GHz 

Ka band 26.5 to 40 GHz 

Q band 33  to 50 GHz 

U band 40  to 60 GHz 

V band 50  to 75 GHz 

E band 60  to 90 GHz 

W band 75  to 110 GHz 

F band 90  to 140 GHz 

D band 110  to 170 GHz 

(from Wikipedia) 
33 



10

20

01

11

11

30

21

21

TE 6.55
TE 13.10
TE 14.71
TE 16.10
TM 16.10
TE 19.65
TE 19.69
TM 19.69

2.29cm (0.90in)
1.02cm (0.40in)

a
b

=
=

Mode fc [GHz] 
X : 8 12 [ ]−band GHz

50 mil (0.05”) thickness 

Modes in an X-Band Waveguide 

“Standard X-band waveguide” (WR90) 

34 

a
b

1"

0.5"



Determine  β, α,  and λg (as appropriate) at 
10 GHz and 6 GHz for the TE10 mode in a 

lossless air-filled X-band waveguide. 

2 2 0.0397
158.25g

π πλ
β

= = =

22 210
2

8

2 10
2.99792458 10 0.0229a

π π πβ ω µε
    = − = −    ×    

@ 10 GHz

Example: X-Band Waveguide 

158.25 [rad/m]β =

3.97 [cm]gλ =

35 

a = 2.29cm

b = 1.02cm
0 0,ε µ

2 2 2: 2
/d d d d

fk f
c f c c

π π π ω ω µε π µε
λ

= = = = = =Lossless



1/21/2 22 29
2

8

22 9

8

2 6 10
2.99792458 10 0.0229

2 6 10
0.0229 2.99792458 10

55.04 [1/m]

zk
a

j

j

π π πω µε

π π

    ×   = − = −         ×       

 × = − −   ×   
= −

2
g

πλ
β

=

Evanescent mode: β = 0; λg is not defined! 

@ 6 GHz

Example: X-Band Waveguide (cont.) 

55.04 [np/m]
478.08 [dB/m]

α =
=

36 



Fields of a Guided Wave 
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2

2

2

2

c z z
z

c

z z z
c

c

z z
z

c

z z z

c

E HjH k
k

E k HjH
k y

E HjE k
k

k E HjE
k

ρ

φ

ρ

φ

ωε
ρ φ ρ

ωε
ρ ρ

ωµ
ρ ρ φ

ωµ
ρ φ ρ

 ∂ ∂
=  ∂ ∂ 

 ∂ ∂−
= ± ∂ ∂ 

 ∂ ∂−
= ± + ∂ ∂ 

 ∂ ∂
= + ∂ ∂ 





Fields Equations in Cylindrical Coordinates 

These equations give the transverse 
field components in terms of the  

longitudinal components, Ez and Hz. 

2 2
ck ω µε=

2 2
c zk k k= −

( ) zjk zF z e= 

These are useful for a circular waveguide. 



Circular Waveguide 

TMz mode: 

( ) ( )2 2, ,z c ze k eρ φ ρ φ∇ = −

2 2 2
z ck k k= −

The solution in cylindrical coordinates is: 

( )
( ) sin( )

,
( ) cos( )

n c
z

n c

J k n
e

Y k n
ρ φ

ρ φ
ρ φ

   
=    

  

Note: The value n must be an integer to have unique fields.  

38 

(eigenvalue problem) PEC 

a

z

, ,ε µ σ

This means any combination of 
these two functions. 
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References for Bessel Functions 

 M. R. Spiegel, Schaum’s Outline Mathematical Handbook, McGraw-Hill, 1968. 
 
 M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions with 

Formulas, Graphs, and Mathematical Tables, National Bureau of Standards,  
Government Printing Office, Tenth Printing, 1972. 

 
  N. N. Lebedev, Special Functions & Their Applications, Dover Publications, New 

York, 1972.  

( )  
( )  

n

n

J x n
Y x n

=
=

Bessel function of the first kind of order

Bessel function of the second kind of order

References: 



Plot of Bessel Functions 

0 1 2 3 4 5 6 7 8 9 10
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
1

0.403−

J0 x( )

J1 x( )

Jn 2 x,( )

100 x

x 

Jn (x) 

n = 0 

n = 1 

n = 2 

(0)nJ is finite

2( ) ~ cos ,
2 4n

nJ x x x
x

π π
π

 − − → ∞ 
 

1( ) ~ 0,1,2,...., 0
2 !

n
n nJ x x n x

n
  = → 
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Plot of Bessel Functions (cont.) 

0 1 2 3 4 5 6 7 8 9 10
7

6

5

4

3

2

1

0

1
0.521

6.206−

Y0 x( )

Y1 x( )

Yn 2 x,( )

100 xx 

Yn (x) 

n = 0 
n = 1 

n = 2 

(0)nY is infinite

2( ) ~ sin ,
2 4n

nY x x x
x

π π
π

 − − → ∞ 
 

0
2( ) ~ ln , 0.5772156, 0

2
xY x xγ γ

π
   + = →    

1 2( ) ~ ( 1)! , 1, 2,3,....., 0
n

nY x n n x
xπ

 − − = → 
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Circular Waveguide (cont.) 

Choose (somewhat arbitrarily)  cos( )nφ

( )
( )

, cos( )
( )

n c
z

n c

J k
e n

Y k
ρ

ρ φ φ
ρ

 
=  

 

The field should be finite on the z axis. 

( )n cY k ρ is not allowed 

( ), , cos( ) ( ) zjk z
z n cE z n J k eρ φ φ ρ −=

42 

( ), cos( ) ( )z n ce n J kρ φ φ ρ=Hence, we have 



B.C.’s: ( ), , 0zE a zφ =

Circular Waveguide (cont.) 

( ) 0n cJ k a =Hence 

c npk a x= np
c

x
k

a
=

Note:  The value xn0 = 0 is not included 
since  this would yield a trivial solution: ( )0 0 0n n nJ x J

a
ρ  = = 
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(This is true unless n = 0, in which 
case we cannot have p = 0.) 

Sketch for a typical value of n (n ≠ 0).  

Note: Pozar uses the notation pmn. 

x

( )nJ x

1nx 2nx

3nx



TMnp mode: 

( ), , cos( ) 0,1,2zjk z
z n npE z n J x e n

a
ρρ φ φ − = = 

 


2
2 1, 2,3,.........np

z

x
k k p

a
 

= − = 
 

Circular Waveguide (cont.) 
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Cutoff Frequency: TMz 

np
c

x
k k

a
= =

TM2 np
c

x
f

a
π µε =

TM

2
d

c np
cf x

aπ
 =  
 

0zk =

2 2 2
z ck k k= −

At  f = fc : 

d
r

cc
ε

≡
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Assume k is real here. 



Cutoff Frequency: TMz (cont.) 

TM01, TM11, TM21, TM02, …….. 

p \ n 0 1 2 3 4 5 

1 2.405 3.832 5.136 6.380 7.588 8.771 

2 5.520 7.016 8.417 9.761 11.065 12.339 

3 8.654 10.173 11.620 13.015 14.372 

4 11.792 13.324 14.796 

xnp values 

46 



TEz Modes 

( ), , cos( ) ( ) zjk z
z n cH z n J k eρ φ φ ρ −=

Proceeding as before, we now have that 

Set ( ), , 0E a zφ φ =

1 z

c

H HE
j z

ρ
φ ωε ρ

∂ ∂
= − ∂ ∂ 

0
a

zH

ρ
ρ

=

∂
⇒ =

∂

(From Ampere’s law) 

( ) 0n cJ k a′ =Hence 
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The prime denotes derivative 
with respect to the argument. 

( )0
a

H
ρ

ρ
=

=



1,2,3,.....

c np

np
c

k a x
x

k p
a

′=

′
= =

( ) 0n cJ k a′ =

TEz Modes (cont.) 

We don’t need to consider p = 0; 
this is explained on the next slide. 
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Sketch for a typical value of n (n ≠ 1).  

x

( )nJ x′

1nx′
2nx′

3nx′



TEz Modes (cont.) 

( ), , cos( ) 1,2,zjk z
z n npH z n J x e p

a
ρρ φ φ − ′= = 

 


Note:  If  p = 0, then 0npx′ =

( )0 0n np nJ x J
a
ρ ′ = = 

 
(trivial solution) 0n ≠

0n = ( )0 0 0 1npJ x J
a
ρ ′ = = 

 

ˆ ˆz zjk z jk z jkz
zH e H z e H z e− − −⇒ = ⇒ = ⇒ = (nonphysical solution) 

We then have, for p = 0:  

The TE00 mode is not physical. 
49 

(violates the magnetic Gauss law) 



TEnp mode: 

( ), , cos( ) 0,1,2zjk z
z n npH z n J x e n

a
ρρ φ φ − ′= = 

 


2
2 1, 2,3,.........np

z

x
k k p

a
′ 

= − = 
 

Circular Waveguide (cont.) 
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Cutoff Frequency: TEz 

np
c

x
k k

a
′

= =

2 npTE
c

x
f

a
π µε

′
=

2
TE d

c np
cf x

aπ
  ′=  
 

0zk =

2 2 2
z ck k k= −

Hence 

d
r

cc
ε

=
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Assume k is real here. 



TE11, TE21, TE01, TE31, …….. 

p \ n 0 1 2    3 4 5 

1 3.832 1.841 3.054 4.201 5.317 5.416 

2 7.016 5.331 6.706 8.015 9.282 10.520 

3 10.173 8.536 9.969 11.346 12.682 13.987 

4 13.324 11.706 13.170 

x´np values 

Cutoff Frequency: TEz 
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TE11 Mode 

TE10 mode of  
rectangular waveguide 

TE11 mode of  
circular waveguide 

The dominant mode of circular waveguide is the TE11 mode. 

The TE11 mode can be thought of as an evolution of the TE10 mode of 
rectangular waveguide as the boundary changes shape. 

Electric field 
Magnetic field 

(From Wikipedia) 

53 

http://upload.wikimedia.org/wikipedia/commons/4/42/TE11.gif
http://upload.wikimedia.org/wikipedia/commons/2/26/TE10.gif


TE11 Mode (cont.) 

The attenuation due to conductor loss for the TE11 mode is: 
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The derivation is in the Pozar book (see Eq. 3.133).  

( )

2

22
11

1 1
11 /

s c
c

c

R f
a f xf f

α
η

  
 = +  ′ − −  

11 1.841x′ =

11
c

xk
a
′

=



TE01 Mode 

The TE01 mode of circular waveguide has the unusual property that the 
conductor attenuation decreases with frequency. (With most waveguide 
modes, the conductor attenuation increases with frequency.) 

The TE01 mode was studied extensively as a candidate for long-range 
communications – but eventually fiber-optic cables became available with 
even lower loss. It is still useful for some high-power applications. 

55 
Note: This mode is not the dominant mode! 

Reason: This mode has current only in the φ direction, and this component of current 
(corresponding to Hz) decreases as the frequency increases (for a fixed power flow 
down the guide, i.e., a fixed Eφ). (Please see the equations on the next slide.) 

( )
( )

01

2
TE

2

/

1 /
cs

c

c

f fR
a f f

α
η

=
−



TE01 Mode (cont.) 
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( )

0 01

01
0 012

0,1

1

/

z

z

jk z
z

jk z

c

TE

H J x e
a

xE j J x e
a k a

H E Z

φ

ρ φ

ρ

ρωµ

−

−

 ′=  
 

′   ′ ′=   
  

= −

The fields of the TE01 mode are: 

( )
( )

0,1
0,1TE

z

Z
k
ωµ

=



TE01 Mode (cont.) 
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0

(0)
2
l

c
P

P
α =

Note: P0 = 0 at cutoff 

cα

f

11TE
cf 01TM

cf 21TE
cf 01TE

cf

11TE 01TM
21TE

11TM

01TE

Note: The attenuation increases at high frequency for all other modes, due to Rs. 



TE01 Mode (cont.) 

Practical Note:  

The TE01 mode has only an azimuthal (φ - directed) surface current on the 
wall of the waveguide. Therefore, it can be supported by a set of conducting 
rings, while the lower modes (TE11 ,TM01, TE21, TM11) will not propagate on 
such a structure.  

(A helical spring will also work fine.)  
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E

HTE01 mode: 
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Products include: 
4-Port Diplexers, CP or Linear; 
3-Port Diplexers, 2xRx & 1xTx; 
2-Port Diplexers, RxTx, X-Pol or 
Co-Pol, CP or Linear; 
TE21 Monopulse Tracking Couplers; 
TE01 Mode Components; Transitions; 
Filters; Flex Waveguides; 
Waveguide Bends; Twists; Runs; etc. 
 
Many of the items are "off the shelf products". 
 
Products can be custom tailored to a customer's 
application. 
 
Many of the products can be supplied with standard 
feed horns for prime or offset antennas. 
 

VertexRSI's Torrance Facility is a leading supplier of antenna feed components for the 
various commercial and military bands. A patented circular polarized 4-port diplexer 
meeting all Intelsat specifications leads a full array of products. 

TE01 Mode (cont.) 



From the beginning, the most obvious application of waveguides had been as a 
communications medium. It had been determined by both Schelkunoff and Mead, 
independently, in July 1933, that an axially symmetric electric wave (TE01) in circular 
waveguide would have an attenuation factor that decreased with increasing frequency 
[44]. This unique characteristic was believed to offer a great potential for wide-band, 
multichannel systems, and for many years to come the development of such a system 
was a major focus of work within the waveguide group at BTL. It is important to note, 
however, that the use of waveguide as a long transmission line never did prove to be 
practical, and Southworth eventually began to realize that the role of waveguide would 
be somewhat different than originally expected. In a memorandum dated October 23, 
1939, he concluded that microwave radio with highly directive antennas was to be 
preferred to long transmission lines. "Thus," he wrote, “we come to the conclusion that 
the hollow, cylindrical conductor is to be valued primarily as a new circuit element, but 
not yet as a new type of toll cable” [45]. It was as a circuit element in military radar that 
waveguide technology was to find its first major application and to receive an enormous 
stimulus to both practical and theoretical advance. 

K. S. Packard, “The origins of waveguide: A case of multiple rediscovery,” IEEE Trans. 
Microwave Theory and Techniques, pp. 961-969, Sept. 1984.  

TE01 Mode (cont.) 
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Waveguiding system: ( )dB 8.686 zα=

Wireless system: ( ) ( )0
10 10 10dB 10log 20log 20log

4t rG G rλ
π

 = − − + 
 

Recall the comparison of dB attenuation: 

TE01 Mode (cont.) 

“In a memorandum dated October 23, 1939, he concluded that microwave radio 
with highly directive antennas was to be preferred to long transmission lines.” 
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