Excess carrier behavior in semiconductor devices

Virtually all semiconductor devices in active mode involve the generation, decay, or movement of carriers from one region to another.

Carrier population that is different from the population at rest (in an inactive state) is by definition, excess carriers.

The excess carrier behavior determines how a device works.
Outline

– Introduction
 • *Devices in active states involve non-equilibrium, and/or non-uniform, and/or transient (non-steady state), and/or non-ohmic carrier injection*

– Non-equilibrium carrier behavior
 • Distribution
 • Relaxation and recombination
 • Migration: drift and diffusion

– Some device examples
 • Photodetectors and switches, lasers and LEDs
 • Cathodoluminescence, FED displays
Introduction

- Devices in active states can involve non-equilibrium, and/or nonuniform, and/or transient (non-steady state), and/or non-ohmic carrier injection.

- Non-Ohmic examples:

 Optical injection

 » Laser, LED: electron-hole non-equilibrium, quasi Fermi level

 » Photoconductive detector: bipolar, carriers with non-uniform spatial distribution, transient with short pulses.

 E-beam injection

 » Cathodoluminescence (TV screen, Field-emission display): electron-hole non-equilibrium, hot carriers.
Non-equilibrium carrier behavior

Key Concepts

- Excess carriers, quasi-Fermi levels, electron/hole plasma
- Carrier injection, ohmic, optical injection (optical pumping), absorption, e-beam injection (pumping)
- Carrier transport: drift and diffusion
Non-equilibrium carrier behavior
Density of state (linear scale) and Fermi distribution (log scale)

- Intrinsic carrier density
- Slightly n-type carrier density
- Slightly p-type carrier density
- Both n and p, not in thermal equilibrium
Non-equilibrium carrier behavior

Excess carriers can have:

- Excess energy (hot carriers, non-thermal equilibrium energy distrib.)
 - leading to Energy relaxation (loosing energy, or energy dissipation):
 - phonon emission (causes lattice vibration)
 - photon emission (emits light)
 - carrier ionization (excites other electrons)

- Excess density (non-thermal equilibrium density)
 - leading to Density redistribution:
 - decaying (recombination)
 - drift and diffusion
Excitation and Relaxation

Photon (absorption)

Photon (emission, radiative recombination)

Thermal generation and recombination

Phonon

Trap

Ionization
Momentum and energy conservation:

\[\mathbf{k}_e + \mathbf{k}_h = \mathbf{k}_{\text{photon}} \approx 0 \]
\[E_e + E_h = E_{\text{photon}} = \hbar \omega \]
Whenever a system is disturbed out of its equilibrium condition, it usually tries to relax back to the equilibrium state. If the disturbing force is maintained, a system may:

- reach a steady state, a balance between the disturbing force and its natural tendency
- become oscillatory but stable, pulled from one state to another in a tug of war between the two forces
- become chaotic (Note: chaos is a discipline of math and natural science)

Excess carrier in semiconductor is a non-equilibrium condition. It follows the typical behavior for any of such systems.
Carrier Diffusion: Introduction
The left hand side particle is likely to move to the right and vice versa: Net flow (L \rightarrow R) per second = $n_L v - n_R v$

$$F = -D \frac{dn}{dx} \quad \text{or} \quad F = -D \vec{\nabla} n$$

D: diffusion coefficient
Number of particles change / second = Net number of leaving or entering particles:

\[
\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{F} = D\nabla \cdot \nabla n = D\nabla^2 n
\]
Current flow

Electron diffusion current: \(J_{Dn}(x) = -eF = eD_n \frac{dn}{dx} \)

Hole diffusion current: \(J_{Dp}(x) = eF_p = -eD_p \frac{dp}{dx} \)

Net electron current: \(J_n(x) = e\mu_n n(x)E(x) + eD_n \frac{dn}{dx} \)

Net hole current: \(J_p(x) = e\mu_p p(x)E(x) - eD_p \frac{dp}{dx} \)

Net current: \(J(x) = J_p(x) + J_n(x) \)
Example: current across a junction
In the above example, the net current must vanish at equilibrium. Hence:

\[0 = J_n(x) = e\mu_n n(x)E(x) + eD_n \frac{dn}{dx} \quad \text{or} \quad E(x) = -\frac{D_n}{\mu_n n(x)} \frac{dn}{dx} \]

The built-in electric field must be sufficient to cancel out the electron diffusion. But how should the carrier density redistribute itself?

Recalling that the principle of detailed balance (Chapter III) stipulates that the Fermi level (which is directly related to the carrier density) be constant across the junction. What this means is that the carrier density must redistribute itself in such a way that \(E_f \) is constant and at the same time giving rise to the electric field given by the above equation. Surely something must be related! Let’s use the approximation that:
Let’s use the approximation that: $n(x) \propto e^{\frac{(E_f - E_c)}{k_B T}}$

Then:

$$\frac{1}{n(x)} \frac{dn(x)}{dx} = \frac{d \ln(n(x))}{dx} = \frac{1}{k_B T} \left(\frac{dE_f}{dx} - \frac{dE_c}{dx} \right) = -\frac{1}{k_B T} \frac{dE_c}{dx}$$

But $\frac{dE_c}{dx}$ is $eE(x)$!

(gradient of the energy is = charge x gradient of potential energy= charge x electric field). So:

$$E(x) = -\frac{D_n}{\mu_n n(x)} \frac{dn}{dx} = \frac{D_n}{\mu_n k_B T} \frac{1}{dx} \frac{dE_c}{dx} = \frac{D_n}{\mu_n k_B T} e E(x) \Rightarrow \frac{D_n}{\mu_n k_B T} \frac{e}{E(x)} = 1$$

or $D_n = \frac{k_B T}{e} \mu_n$

: this is the Einstein relation. The physical meaning of it is the following: the charge carrier can diffuse only as much its mobility allows; and the higher temperature, the more kinetic energy it has to diffuse. Does this make sense?
Example: charge diffusion with continuity condition

In the figure above, if we have continuous injection, will the electron-hole gas keep on building up to a great density and expanding forever?

Obviously not. Because the carriers recombine and as it expands, the gradient is smaller and the diffusion is weaker. Intuitively, the harder we pump, the bigger the EH gas volume should be. How do we describe this quantitatively?
The change of local carrier density per unit time = Rate on injection – rate of decay (recombination) + net rate of diffusion (in - out)

\[
\frac{\partial n}{\partial t} = P - \frac{n}{\tau} + D \nabla^2 n
\]

P is the pumping rate, \(\tau\) is the carrier lifetime that effectively describes that recombination.

At steady state: \(\frac{\partial n}{\partial t} = P - \frac{n}{\tau} + D \nabla^2 n = 0\)

For one dimension:

\[
D \frac{d^2 n}{dx^2} = \frac{n}{\tau} - P
\]

\[
D \frac{d^2 n}{dx^2} = \frac{n}{\tau} - P \Rightarrow \frac{d^2 n}{dx^2} = \frac{n}{\tau D} - \frac{P \tau}{\tau D} = \frac{n - n_o}{\tau D} \quad \text{define } \left(n_o \equiv P \tau\right) = \frac{n - n_o}{L_D^2} \quad \text{define } L_D^2 \equiv D \tau
\]
A solution is:

\[n(x) = n_1 e^{-x/L_D} + n_o \]

The quantity \(L_D \) is defined as diffusion length. So, the electron-hole gas does not expand forever, but maintains a steady exponentially decay profile.
Device discussion
(in class)

- Photodetectors and switches, lasers and LEDs

 Cathodoluminescence, FED displays