Optical Fibers and Cables

ECE 6323

The challenges of optical fibers and cables for telecom applications

- Can be manufactured, meeting certain requirements on quality, performance, costeffectiveness: desirable transmission characteristics for very long length
- Flexibility in fiber designs to meet different applications
- Can be handled with the same manner with older cables (copper)
- Can meet requirements of cutting, connecting, joining... with similar ease as older cables

Optical Fibers and Cables

- Optical fiber manufacturing
- Types of optical fibers
- Optical fiber cables
- Types of cable

Optical fiber manufacturing

- Very very important: years after years, improvement and innovation are still being made. Every little improvement counts!
 Because the global telecom system is so big.
- Ultra pure glass and other materials
- Two main methods:
 - Liquid phase (melting): the earlier method
 - Vapor phase: advanced method

Vapor phase deposition

- Capable of producing highest purity silicarich glass and lowest loss fiber
- The materials were deposited from the gas phase for chemical reaction producing high uniformity
- Allow flexibility in materials and structure design: producing multi-component fibers, complex refractive index profile
- Two main categories:
 - Flame hydrolysis
 - Chemical vapor deposition

Key features of various vapor phase deposition

Optical fibers 183

Table 4.2 Summary of vapor-phase deposition techniques used in the preparation of low-loss optical fibers

Reaction type	
Flame hydrolysis	OVPO, VAD
High-temperature oxidation	MCVD
Low-temperature oxidation	PCVD
Depositional direction	
Outside layer deposition	OVPO
Inside layer deposition	MCVD, PCVD
Axial layer deposition	VAD
Refractive index profile formation	
Layer approximation	OVPO, MCVD, PCVD
Simultaneous formation	VAD
Process	
Batch	OVPO, MCVD, PCVD
Continuous	VAD

Main fiber types

- Multi-mode step-index fiber
- Multi-mode graded-index fiber
- Single-mode fiber

- Step-index conventional fibers
- Non-dispersion shifted
- Non-zero dispersion shifted
- Plastic-clad fibers
- Plastic optical fibers

