
Lightwave review
(For ECE 6323) han q le - copyrighted

1. Basic

1.0 A note about wave optics and ray optics (geometrical optics)

- Wave optics is the mathematically rigorous “classical” theory of light (which does not include 
quantum theory.

- Ray (or geometrical) optics is a mathematical approximation of wave optics when the wavelength 
is very small compared with the sizes of the objects or geometrical features of interest. Since this 
is often true in many optical system applications, it is not unusual to see that ray optics, which is 
intuitively easier to apply is often used instead of wave optics. 

- However, for optical communications, ray optics is largely inadequate to truly understand or do 
any engineering practice.

- In addition, even wave optics alone is not sufficient to describe many other important 
phenomena. Fundamentally, the more complete theories would be - in this order: quantum 
electrodynamics (QED), quantum electro-weak theory, and GUT - grand -unifying theory,... 

We don't really need any of those except for quantum optics, which is a part of QED dealing with 
photons, the particle of light with low energy - in the electron-Volt (eV) energy range for optical 
communications.

1.1 Electromagnetic wave theory



Important wavelength range for optical communications: 1.6-1.4 m, 1.3 m. For LAN, 0.8 m.

1.2 Maxwell’s equations
The electromagnetic field is represented by 2 vector fields
- E: electric field
- H: magnetic vector field

In a dielectric medium such as silica (e. g. optical fiber) we need two more vector fields:
- D: electric dispacement field: D  E  4  P   
where P is the polarization field in the medium
- B: magnetic induction field: B  H  4 M
where M is the magnetization field of the medium  

The EM fields are generated by sources, which are:
- J: electric current density: J   . E , and
- : electric charge density.

For optics, we don’t need to include the sources.

Maxwell’s equations without sources
We use the CGS-Gaussian system of unit.

Maxwell equations:
  E  1

c
B
 t  0                         

 H  1
c
D
 t  0                    

 . D  0                                    
 . B  0

In a linear medium, polarization P and magnetization M are linear with respect to E and H:
P   . E  ,                           
where  is a second-rank tensor called electric susceptibility, and
 M   . H   
where  is the magnetic susceptibility.
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where  is the magnetic susceptibility.
Thus:
 D  E  4  P  1 4   E  E  
 B  H  4 M  1 4   H  H  

In practice for optics, we 

1.3 Light quantum
Light carries energy as we know. We learn from modern (quantum) physics that light consists of quantized package 
energy known as photons. (we will have a review of quantum physics later in the course). Each photon has an 
energy:
                                                     E  h   
where h is the Planck's constant.

Thus, the fundamenal description of light is really a harmonic oscillator, which means that light is not described 
with arbitrary time-dependent function but with harmonic function:
                                         Er, t  Er;    t  
(We will use complex notation throughout. Sin or Cos are obtained from the Im or the Re part of the expression.)

1.4 Wave equations vs. Helmholtz equation 
The most important implication of the Maxwell equations is the existence of EM waves. One can derive from the 
Maxwell’s equations:

2 E 
 

c2

2

 t2
E  0                             

2 H 
 

c2

2

 t2
H  0                            

which are known as the wave equations. 
We need only one of them (either one), because once we have either field, the other one can be determined via the 
Maxwell’s equations.

Note: in vacuum (for CGS-Gaussian units we use here), = 1, =1 and the wave propagates with the speed of light 
c.

However, from the above, we know that the fundamental description of light is harmonic wave, hence, the truly 
operational equation for dealing with light is not the wave equations above but:

                                     2 F  2

c2   F  0:                 

where F represents either E or H. This is Helmholtz’s equation. 
It is obtain by simply using Er, t  Er;    t in the wave Eq.

We define:                                       k0 

c

which is also referred to as the wave number or the propagation constant.

1.5 Intensity, power, and Energy 
Lightwaves carry energy. It is also directional, which means that the energy flows in certain direction. A key 
parameter describing the energy flow is the Poynting vector, defined as:
                         S  c

4  E H      

Review_prereq_Light wave_p.nb    3



4 

(note: use real representatives of the fields, i. e. S  c
4 

ReE  ReH ). 

The magnitude of the Poynting vector represents the intensity I or the power density  P
S

 of a lightwave. But for 

light, instantaneous intensity usually does not have much meaning. The relevant quantity is the time-average of the 
intensity over one cycle (period) of the harmonic wave. It can be shown that we can also write:

                      I  S  c
8  Re E


H


              

The brackets   here denotes time-averaged quantity and the conjugate of H


 removes the time-dependence term. 

Power is the integration of intensity over a surface or the cross section (area) of a surface of interest:
                               P  AIn S
where In denotes the intensity that is normal to the surface at the integration point of the surface. More generally, 
we can also write:

                               P  AS . n S
where n  is the normal unit vector of the surface.
If the surface is in a plane with a finite area A:
                               P  In A

Energy is the accumulated power over a certain period of time:
                              E   Pt  t

The above is the classical concept. From the quantum theory, we actually start with energy as the fundamental 
concept. 

As mentioned above, light consists of photons. Each has a unique frequency with a package of (quantized) energy:
                                                     E  h                        
where h is the Planck's constant. Depending on the system, a photon also has quantum state with respect to space.

The classical description of light wave is simply the statistical ensemble average of a large number of photons.

If we have a spatial density of Nph photons in a medium with the speed cn , the power crossing a surface area S in 

the direction of light propagation is:
                                       P  limt 0

1
t E A c

n t  c
n Nph h  S          (6.1.2)

In the limit S-> 0, we have power density or intensity:
                                         limS 0

P
S  I  c

n Nph h               (6.1.3) 

Here, we study classical wave optics, where we deal with a large number of photons, not having to worry about the 
quantum behavior of light. 

A review test of background knowledge

0.1 Laser beam - Gaussian beam model
Why laser light can be made traveling straight and narrow, but non-laser light seems to always spread?

Light is just ... light: electromagnetic (EM) wave, so why are there “different” behaviors of light? 
How do we describe (mathematically) a laser beam that we see often?
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0.2 Light polarization
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0.3 Reflection, refraction, total internal reflection, evanescence wave
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0.4 Dispersion
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is this the same phenomenon as the rainbow or prism ? (No. we’ll learn later how they are different)
A key thing about learning and knowledge is “discrimation”: the ability to distinguish things that may appear 
similar superficially but fundamentally different”. An analogy: resolution of a camera.

 

is this the same phenomenon as that of the rainbow or the optical disk? (No. we’ll learn later how they are different)
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What phenomenon above is most similar to this?

 

 

0.5 Interference
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http://www.olympusmicro.com/primer/techniques/fluorescence/interferencefilterintro.html
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0.6 Diffraction
Is this the same phenomenon as the rainbow or prism ? No, it is diffraction  

Review_prereq_Light wave_p.nb    13



Is this the same phenomenon as the rainbow or prism ? No, it is diffraction  

 

How does light moves, interacts with objects, structures?
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http://www.youtube.com/watch?v=IZgYswtwlT8
http://www.youtube.com/watch?v=4EDr2YY9lyA

Review_prereq_Light wave_p.nb    15



0.7 Basic component technology
 Light source and lasers. Light detectors. Optics/photonics devices: active/passive. Waveguides, filters, grating, 
amplifiers, modulators.

2. Illustration: monochromatic harmonic plane waves 
in dielectric

2.0 A very basic review and illustration

2.1 Vector representation

2.1.1 Vector relationship
Electric field is a vector:           E  Ex, Ey, Ez                     (2.1.1a)
same with magnetic:                 H  Hx, Hy, Hz                    (2.1.1b)
For plane wave, each component has the same phase function:
                                                       k . r t                      (2.1.2a)

where:         k  
c    k0    2 


           (2.1.2b)

Let's check their relationship with Maxwell's equation
                                                   E 



c
H
 t  0            (2.1.3)

 Calculate  × E

          E




x y z

x y z
Ex Ey Ez



x y z

x y z

Ex  k . r Ey  k . r Ez  k . r
  t

   x y z 
ky Ez  kz Ey
kz Ex  kx Ez
kx Ey  ky Ex

 k . r t   k E


     (2.1.4)

This is a basic relation for a harmonic plane wave 

                                                 E


  k  E


                (2.1.5)

Here is how to use Mathematica to do the above:
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k . ; x . ; y . ; z . ;
CurlFx  k1 xk2 yk3 z , Fy  k1 xk2 yk3 z  , Fz  k1 xk2 yk3 z  , x, y, z

 k2 Fz  k1 xk2 yk3 z   k3 Fy  k1 xk2 yk3 z,

 k3 Fx  k1 xk2 yk3 z   k1 Fz  k1 xk2 yk3 z,  k1 Fy  k1 xk2 yk3 z   k2 Fx  k1 xk2 yk3 z

FullSimplify

 k2 Fz  k3 Fy  k1 xk2 yk3 z,  k1 Fz  k3 Fx  k1 xk2 yk3 z,  k1 Fy  k2 Fx  k1 xk2 yk3 z

k1 , k2 , k3   Fx , Fy , Fz

k2 Fz  k3 Fy, k3 Fx  k1 Fz, k1 Fy  k2 Fx

Hence, we obtain the relation in (2.1.5)
                                    

 Calculate 
c
 H
 t

                                        
c
H
 t

 


c
H

 Apply Maxwell equation for the two terms, express H as function of E

                              E

  k  E


 



c
H
 t  



c H

                                             k  E

  k0 H

                                             k0   k

 E

  k0 H

                                           


k

 E

 H

 Do the same for Maxwell equation:   H  
c
 E
 t
 0  

                                       H   k  H  
c
 E
 t   c E  

                                      k0   k

 H   k0 E

                                              


k

 H   E  

 What can you conclude about the angles between the three vectors: k, E, and H?

 What is the relationship between magnitude of E and H?

From above:                    


E  H
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 Calculate the Poynting vector for a plane wave

                                           S  c
4 

ReE ReH 

We drop the Re[], just keep in mind so.

                                           S  c
4  E 


k

 E


 c

4 



k

 E 2  

For harmonic wave, the time-average of Cost2 or Sint2 is 1
2 , hence:

                                         S  c
8 




 E 2    

Note: we must use real quantities in calculating S, but use the conjugate of H if using the fields in complex form 
for time-averaged. Example: let E  x ACosk z  t

                                    H  y 

ACosk z   t 

Then,     S  x  y c
4 



A2 Cosk z   t2  z c

4 


A2 Cosk z   t2

This is “instantaneous intensity,” but really not meaningful. What is physically meaningful is the time-averaged 
intensity, which is what we measure, and what is relevant in optical systems:

                                       I  S  c
8 



A2                 

2.1.2 Linear poplarization.
The orientation of the E field vector is generally called “polarization” of the light. However, polarization is also a 
more general concept than a specific quantity. It is about the description of the properties of the vectorial nature of 
the E and H field. A question is: why we pick the orientation of E field as the preferred description for polarization 
but not H field? There are 2 reasons: 1- it’s just a convention because E field is more familiar, and 2- H field is 
really an axial vector, not a true vector as we will see. Hence, using E field orientation as the polarization is more 
intuitive to understand in terms of vector orientation.

If the orientation of the E field is always in a plane, we define that to be linear polarization.

Because k, E, and H are mutually orthogonal, we can choose coordinate: z= along k, E along x and H along y  for 
the case of linear polarization. We will examine polarization in depth in later chapter.

z  0.05 ;
Animate

Graphics3DTableRGBColor1, 0, 0,
Arrowz l, 0, 0, z l, 0 , Cos2  z l  t  , l, 0, 40

, TableRGBColor0, 0, 1,
Arrowz l, 0, 0, z l, Cos2  z l  t , 0. , l, 0, 40  ,

ViewPoint 5, 8, 3, PlotRange 0, 2, 1, 1, 1, 1,
t, 0, 1, 0.02, AnimationRunning False, DisplayAllSteps True
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z  0.05 ;
Animate

Graphics3DTableRGBColor1, 0, 0,
ArrowTubez l, 0, 0, z l, 0 , Cos2  z l  t , 0.01  , l, 0, 40

, TableRGBColor0, 0, 1,
ArrowTubez l, 0, 0, z l, Cos2  z l  t , 0. , 0.01, l, 0, 40  ,

ViewPoint 5, 8, 3, PlotRange 0, 2, 1, 1, 1, 1,
t, 0, 1, 0.02, AnimationRunning False, DisplayAllSteps True

   

 Is linear polarization the only possible polarization for plane wave?

2.1.3 Circular poplarization.
We know that k, E, and H are mutually orthogonal, and we choose above each vector to be always in a plane. But 
there is nothing forcing it that way.

z  0.025 ;
Animate

Graphics3DTableHuez l  t, 1, 1,
Arrowz l, 0, 0, z l, Cos2  z l  t , Sin2  z l  t , l, 0, 80 ,

ViewPoint 5, 8, 3, PlotRange 0, 2, 1, 1, 1, 1,
t, 0, 1, 0.025, AnimationRunning False, DisplayAllSteps True

 

z  0.025 ;
Animate

Graphics3DTableRed,
Arrowz l, 0, 0, z l, Cos2  z l  t , Sin2  z l  t 

, Blue,
Arrowz l, 0, 0, z l, Sin2  z l  t , Cos2  z l  t , l, 0, 80 ,

ViewPoint 5, 8, 3, PlotRange 0, 2, 1, 1, 1, 1,
t, 0, 1, 0.025, AnimationRunning False, DisplayAllSteps True
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Is the wave shown below possible?

2.2 Single wave traveling
If we deal with ONLY one component of the vector, we can treat it as a scalar field. We can plot the ampitude 
along the z axis to visualize a wave.

Manipulate k  1., 0. ;  2 Pi ;
Plot3DRe k . x, y t  , x, 0, 30, y, 0, 1

, BoxRatios  5, 2, 1 , PlotPoints  50, 10,
ViewPoint  5, 5, 3, Mesh  False, PlotRange  All

, ImageSize  300, 200 , t, 0, 1

Manipulate k  Cos, Sin ;  2 Pi ;
Plot3DRe k . x, y t  , x, 0, 20, y, 0, 20

, BoxRatios  5, 5, 1 , PlotPoints  50, 50,
Mesh  False, PlotRange 1, 1

, ImageSize  300, 200 , t, 0, 1, , 0, 2 Pi

20     Review_prereq_Light wave_p.nb



Manipulate k  Cos, Sin ;  2 Pi ;
ShowPlot3DRe k . x, y t  , x, 0, 20, y, 0, 20

, BoxRatios  5, 5, 1 , PlotPoints  50, 50,
Mesh  False, PlotRange 1, 1

, ImageSize  300, 200
, Graphics3DRed, ArrowTube0, 0, 0, 20 Cos, 20 Sin, 0 , 0.1


, t, 0, 1, , 0, 2 Pi

 

1D propagation
In fiber and waveguide, we can actually reduce the wave to 1 dimensional like 1D plane wave because light travels 
along only one axis.

  1 ;   2  ;
ManipulatePlot Re  z t , z, 0, 50, ImageSize 600, 100,

PlotRange 0, 50, 1, 1, Frame True, AspectRatio 0.1, Filling Axis
, t, 0, 1, , 1, 1, 2 

A test

  1 ; 1  2  ;

Manipulate2 
2

1
 ;

Plot Re  z1 t , 2Re 2 z2 t , z, 0, 50, ImageSize 600, 100,
PlotRange 0, 50, 1, 4, Frame True, AspectRatio 0.1, Filling Axis

, t, 0, 1, , 1, 1, 2, 2, 2  , 10  

Note on real and imaginary: (E and H)
We use a complex function  k . r t to describe the wave. E and H in nature are real quantity. We obtain them by 
taking the real part of the complex function. We will see that we can use either the Re or the Im part, but must stick 
to the choice consistently. NO mix and match between the Re or Im part.
They differ by a 90 degree phase.
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2.3 Multiple EM fields of the same frequency

2.3.1 k1 wave

  2 Pi ;   Pi 6. ;
k  Cos, Sin ; t  0. ;
a  Plot3DRe k . x, y t  , x, 0, 30, y, 0, 30
, BoxRatios  5, 5, 1 , PlotPoints  50, 50,

Mesh  False, PlotRange 1, 1

2.3.2 k2 wave

  2 Pi ;   Pi 6. ;
k  Cos, Sin ; t  0. ;
b  Plot3DRe k . x, y t  , x, 0, 30, y, 0, 30
, BoxRatios  5, 5, 1 , PlotPoints  50, 50,

Mesh  False, PlotRange 1, 1

Showa, b

2.3.3 Both k1 and k2 wave
Is this correct description of the presence of 2 waves?

Graphics3D 
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2.3.4 Both k1 and k2 wave: continued

Manipulate
k1  Cos, Sin ; k2  Cos, Sin;
Plot3DReExpI  x , y . k1  2  t

 ExpI  x , y . k2  2  t  , x, 0, 50, y, 0, 50
, BoxRatios  5, 5, 1 , PlotPoints  50, 50,

ViewPoint  5, 5, 3, Mesh False, PlotRange 2, 2 
, t, 0, 1, , 20Pi 190, 45Pi 180 

  

Below is the correct answer: interference effect.

Manipulate
k1  Cos, Sin ; k2  Cos, Sin;
Plot3DReExpI  x , y . k1  2  t

 ExpI  x , y . k2  2  t  , x, 0, 30, y, 0, 30
, PlotPoints  50, 50, Mesh False, PlotRange 2, 2 

, t, 0, 1, , 20Pi 190, 45Pi 180 

  

Manipulate
k1  Cos, Sin ; k2  Cos, Sin;
DensityPlotReExpI  x , y . k1  2  t

 ExpI  x , y . k2  2  t  , x, 0, 30, y, 0, 30
, PlotPoints  50, 50, Mesh False, PlotRange 2, 2 , ColorFunction "Rainbow"

, t, 0, 1, , 10Pi 190, 80Pi 180 
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3. Plane waves in complex dielectric medium

3.1 Discussion
A plane wave has constant intensity and power throughout. 

  1 ;   2  ;
ManipulatePlot Re  z t , z, 0, 50, ImageSize 600, 100,

PlotRange 0, 50, 1, 1, Frame True, AspectRatio 0.1, Filling Axis
, t, 0, 1, , 1, 1, 2 

That’s not what happens in reality. Light power is lost gradually in a fiber. Or sunlight is weakened in a sunglass. 
How do we describe such a phenomenon?

  1;   2  ;
ManipulatePlot Re   z t  , z, 0, 500, ImageSize 600, 100,

PlotRange 0, 500, 1, 1, Frame True, AspectRatio 0.1, Filling Axis
, t, 0, 1, , 0, 0.1 

The dielectric function  does not have to be real. It can be complex in general. 
Thus, we can describe it as:
                                      E   k . r t    2  z t   

                                       k  
c    k0    k0 n        

                                       where:         n   2     (we let =1)

3.2 Example 1: inhomogenous wave
Let’s consider 2-D case:  kx xky y . We might think that it is just the same as the 1-D case above, but the prop 
direction is not along z but may be some direction {cos[], sin[]} in the x-y plane.
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Manipulate  1.5   2 ;

k  Cos , Sin  ;
Plot3DReExpI  x , y .k  2  Pi t, x, 0, 30, y, 0, 30

, PlotRange  1, 1
, BoxRatios  5, 5, 2 ,

PlotPoints  70, 70, Mesh  False, PlotRange  All
, , 0, Pi  2, t, 0, 1, , 0, 0.1

However, recall that  kx xky y  is a solution of the wave equation as long as: 

                                                         kx2  ky2 
2

c2   

There is no need for any relationship between the real and imaginary of kx and ky as above, i. e.  
kx  kR   kI Cos ; ky  kR   kI Sin . If kx and ky are not proportional to cos, sin of some angle, what 
would a solution be like? what type of wave does it describe?

Manipulate  1.5   2 ;
k  kx , Sqrt  kx^2 ;
Plot3DReExpI  x , y .k  2  Pi t, x, 0, 30, y, 0, 30

, PlotRange  1, 1
, BoxRatios  5, 5, 2 ,

PlotPoints  70, 70, Mesh  False, PlotRange  All
, kx, 0, 1, t, 0, 1, , 0, 0.1
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Manipulate  1.5   2 ;
k  kx , Sqrt  kx^2 ;
DensityPlotReExpI  x , y .k  2  Pi t, x, 0, 30, y, 0, 30

, PlotRange  1, 1
, BoxRatios  5, 5, 2 , PlotPoints  70, 70, Mesh  False, PlotRange  All

, ColorFunction  "Rainbow"
, kx, 0, 1, t, 0, 1, , 0, 0.1

 

This a valid solution, here the wave in the x-direction seems to have constant amplitude, but the y-traveling part has 
a strong attenuation. Such a wave is called inhomogenous. Where can we use such a solution?
Think about boundary. Say, if we feed a wave into a lossy/gain medium from a non-loss medium, the boundary 
component can be non-loss. If the sunlight enters your sunglasses at an angle, this is what happens.

3.3 Example 2: evanescence wave
But we can have complex k even if  is NOT complex, because all that is required is:

                                                    kx2  ky2 
2

c2   

as long as the imaginary term on the left hand side vanishes.

Suppose kx2  k0
2  , what is the solution?

Clearly,                        kz2  k0
2    kx2  0.           

                                    kz  k0
2    kx2   .      

where                               kx2  k0
2                    

How about this solution:
                                    kx xkz z    kx x  z               

Animate  1; k0 
2 


;   2  ; k 

2   1.2


;

  k2  k02 ;
Plot3DRe  k x t z , x, 0, 5, z, 0, 1

, BoxRatios  5, 1, 2, PlotPoints  50, 10,
ViewPoint  3, 1, 2, Mesh  False, PlotRange  1, 1

, ImageSize  300, 200 , t, 0, 1, AnimationRunning False
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 Is it a physically meaningful wave? Where do you think they exist? What happens at z -> - 
The above wave is called evanescent wave in the z dimension. Discussion in class about dielectric waveguide.

3.4 General summary
In more general, we can have a wave  kR Cos xSin y  kI;x xkI;y y  which propagates in the direction of angle   
but with attenuation/gain amplitude that does NOT have to have the same angular relation between x and y. The 
only requirement is:
                   kR2 Cos2  kI;x2  kR2 Sin2  kI;y2  k0

2 R  
                   2 kR kI;x Cos  2 kR kI;y Sin  k0

2 I
Or:
                    kR2  kI;x2  kI;y2  k0

2 R  
                   2 kR  kI;x Cos  kI;y Sin   k0

2 I

The attenuation/gain in each direction can be determined by something else, e. g. a boundary condition.

Suppose, for example, there is another angle involved such that 
                             kI;x  kI Cos ; kI;y  kI Sin  
Then:                 2 kR kI  Cos Cos Sin Sin   k0

2 I  
Or:                     2 kR kI Cos    k0

2 I
The concept of "inhomogeneity" is from the fact that the wave has different phase and amplitude angular direction. 
We of course always refer to the phase direction as the angle of propagation.

3.5 Power
What is the power of plane wave in a complex dielectric medium?
Consider a wave transmitted from a non-lossy medium such as air into an absorptive dielectric. For simplicity 
consider TE mode:
The incident field along interface x=0  is:  Ey   z

The transmitted field is:             t Ey   z  x kR  kI

where:                             2  kR   kI2   k0
2

Note that  is real because it is along the interface of a lossless medium: see 3.2 example above.

The H field is, as usual:         k  E

  k0 H

Here,  k is complex. k   z  kR   kI x

                                 k  E

   x  kR   kI z   k0 H

                       S  c
4 

ReE  ReH] 

                        = c4   y  Cos z  x kR x kI

 1
 k0

  x  z kR Cos z  x kR x kI  kI z Sin z  x kR x kI
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Take time average and let =1:

                                            S  c
8 

 z

x

kR

k0
2 x kI

Hence:                               I  c
8 

2  kR2
k0

2 x kI

4 Wave in other geometries: spherical and cylindrical

4.1 Spherical wave in isotropic media
Let's start from the Helmholtz equation:
                                                     2F  k0

2   F  0. 
Earlier we write: 2  x,x  y,y z,z. What if we use a different coordinate?

LaplacianFr, , , r, , , "Spherical"

F0,2,0r,,
r

 F 1,0,0r, , 

r
 F 2,0,0r, ,  

1

r

csc sin F 1,0,0r, ,  
cos F 0,1,0r, , 

r


csc F 0,0,2r, , 

r

Let’s consider a wave that is purely spherical, it has no dependence on the angles:

LaplacianFr, r, , , "Spherical"

Fr 
2 Fr

r

k0  .;

DSolve
2 Fr

r
 Fr k02  Fr  0, Fr, r

Fr
c1 r k02  

r

c2 r k02  

2 r k02  



The solution is

                                                
 k r

r c1 
 k r

r c2                (5.4.1)

where                                         k  k0  

So, we have a spherical wave solution also: 
 k r   t

r . What do we do with this solution? What is the physical 

meaning? what happens at r = 0?
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  1; k 
2 


;   2  ; n  20 ;

AnimatePlot Re
1

r
 k r t

, r, 1, 10
, PlotStyle  RGBColor1., 0., 0, Thickness0.007,

RGBColor0., 0., 1, Thickness0.007
, PlotRange 0, 10, 1, 1

, ImageSize  500, 200 , t, 0, 1, AnimationRunning False

2 4 6 8 10

1.0

0.5

0.5

1.0

ShowPlot3D0, x, 1, 2, y, 1, 2, Mesh False, SphericalPlot3D1, , 0, Pi, , 0, 2 Pi,
PlotRange 1, 2, 1, 2, 1, 1, BoxRatios 3, 3, 2

Let’s cut across the equator and plot the wave amplitude in density plot:

  2  ; k  2  ;

Manipulate

DensityPlotRe

 v k x2y2   t

x2  y2
, x, 1, 5, y, 1, 5,

PlotPoints  40, 40, PlotRange  1, 1, ColorFunction  "Rainbow"

, v, 1, 1, 1, t, 0, 1
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  2  ; k  2  ;

Manipulate

Plot3DRe

 k v x2y2   t

x2  y2
, x, 1, 5, y, 1, 5,

PlotPoints  40, 40, Mesh  False, PlotRange  1, 1

, v, 1, 1, 1, t, 0, 1

Manipulatem ArcSin1 r ;
ShowGraphics3DBlue, Tuber, 0, 0, 0.2, 0, 0  ,

ParametricPlot3D r Cos Cos  1  , r Cos Sin, r Sin ,
, m, m, , m, m, Mesh False, PlotStyle Opacity0.7,

PlotRange 1, 0.2, 1, 1, 1, 1, BoxRatios 1.2, 2, 2 
,
r,

1,
10

     

 Where (in which phenomena) do you expect to see this type of wave?
Remember: like plane wave, an ideal or perfect spherical wave doesn’t exist in nature. But they can be very useful 
approximation to numerous problems. For example, if we consider a very small source of light from a distance 
much larger than the extent of the source (far away) and many (a large number) wavelengths, it is as good as a 
spherical wave for any practical purpose calculation. The point source can be just a small aperture, or even a single 
atom or molecule emitting the photon. 
Of course each photon has a finite momentum k, hence a specific direction. But if k is purely random with  equal 
probability in any direction, then the atom or the molecule is practically a source of spherical wave.
We will see that in dealing with various problems in diffraction, spherical wave is a useful model.

Spherical wave in non-isotropic media can be quite more complicated (mathematically)

Illustration - Link to Dipole Illustration

4.2 Cylindrical geometry wave
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We choose a different coord syst and we get an answer not expected from plane wave solutions. What if we choose 
another one like cylindrical?

LaplacianF, , , z, "Cylindrical" 

F 
F



DSolveF
F


 k02  F  0, F, 

F c1 J0k0    c2 Y0k0  

Again, it can be an approximated model for some some waves in some problem. 

The solution now is Bessel J and Y function!. What are other coordinates? what are other solutions?

k  2 Pi ;
AnimateParametricPlot3D Cos,  Sin, Cos2  t J0k  ,

, 0, 3, , 0, 2 , PlotRange 3, 3, 3, 3, 1, 1, Mesh False,
PlotPoints 20, 20, BoxRatios 1, 1, 1, t, 0, 1, AnimationRunning False

Notice that it behaves like a standing wave! which means that it must be a sum of incoming and outgoing wave. 
That's the only way to have finiteness at the center. Can we construct a radiating wave? 

 Where (in which phenomena) do you expect to see this type of waves?
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5. Principle of linear superposition

5.1 Discussion - concept
We know that light waves all around us, in various technologies are certainly more complicated than those plane 
wave, spherical or cylindrical waves above. How do we describe these waves?
Just like in differential equation, we know that there are infinite solutions, but all of them can be constructed from 
the basis set of solutions, the same is applicable to light waves. The solutions we discuss above are “basis” solution 
and using the linear superposition principle, we can construct any light wave.

Example:

DSolvey''x  k2 yx  0, yx, x

yx c2 sin2  x  c1 cos2  x

Manipulate PlotSin2  x, Cos2  x, q . Sin2  x, Cos2  x , x, 0, 1,
PlotStyle  Thick, Red, Thick, Blue, Thick, Black, PlotRange 1.5, 1.5
, Filling 3 Axis, Hue0.8, 1, 1, 0.2
, Frame True, GridLines Automatic,
FrameLabel Style"x", 20 , Style"y", 20 , LabelStyle 20, FontFamily "Arial"

, q, 0.5, 0.5, 1, 1, 1, 1

The black curve shows that any solution to the differential equation is a linear combination of the red (Sin) and 
blue (Cos) basis functions.

Coefficients c1 and c2 are arbitrary and we can construct infinite solutions. Sin and Cos are basis functions. In 
many systems, the basis functions are orthogonal, and they can be normalized to become orthonormal.

A basis set may have an infinite number of orthonormal functions, such as Sin[n  x], Cos[ n  x], n= 0,1, 2,..
An example of linear combination of an infinite number of basis function is the Fourier series theorem, which 
allows us to construct any arbitrary-shape periodic function.

For discrete basis set, we write a general function as a sum:
                      x, t  n1

 cn nx, t                   (5.1.1)
For continuous basis set, we use integration: 
                     x, t  

ck nk; x, t k          (5.1.2)
We know that plane waves form a continuous set, so in principle, we can form a solution like this for a monochro-
matic wave
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matic wave
             

ck  x. k t k    t 
ck  x. k k       (5.1.3)

So, this is the principle, let’s implement it in an example:

5.2 Example of linear superposition: 2D Gaussian beam 
Suppose we have a monochromatic 2D light beam in x and z. The beam is constant along y direction. For example, 
if we put a screen perpendicular to z (i. e. x, y plane), it looks like this:

Plot 2 x2w2 . w  1 , x, 3, 3, Filling Axis, FillingStyle Blue

3 2 1 1 2 3

0.2
0.4
0.6
0.8
1.0

DensityPlot 2 x2w2 . w  1 , y, 10, 10, x, 3, 3,
ColorFunction  GrayLevel, FrameLabel  y, x, AspectRatio  0.3 

This is what we call “Gaussian” profile (along x-direction). How do we describe the E field wave E[x,z,t] of this 
light beam? (the above give us ONLY a profile in x at z=0, and time-averaged.

Since it is monochromatic, we know that the time factor is simply   t. It’s up to us to find out the z part.

We know that  k2  kx2  kz2  2

c2    k0
2   . So only one of the 2 k's can be independent. Let's pick kx to 

be independent and the integrating variable. Then, the formula (5.1.3) becomes:
               t 

ckx  x kx  z kz kx                     (5.2.1a)

                  t 
 ckx 

 x kx  z k0
2   kx2

kx      (5.2.1b)
Now, what we really need is ckx. This is the “arbitrary” coefficient that allows us to construct any solution. How 
do we choose ckx  in this case?

5.2.1 Integral expression for Gaussian profile
For the Gaussian profile above: 

Plot x2w2 . w  1 , x, 3, 3, Filling Axis, FillingStyle Blue

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0
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This is what we have:  (the solution at z=0) =  x2w2 .

We want:  
 ckx 

 x kx  z k0
2   kx2

kx at z = 0 =  x2w2

Or:                                     
 ckx  x kx kx   x

2w2     (5.2.2)        
How do we solve for ckx ? We need inverse Fourier transform:
                     ckx 

1
2  

  x
2w2

 x kx  x               (5.2.3)    

k  . ;
1

2 





 x k  x2w2
 x

ConditionalExpression


1

4
k2 w2

2  1

w2

, Re
1

w2
  0

So the solution is                     ckx = w

2 


1

4
kx2 w2

   (5.2.4)    

What is the meaning of  ckx?

c[k] describes the beam profile in terms of a "package" of several beams with different spatial 
frequency. Key concept: spatial frequency k. c[k] is the envelop or coefficient of the "package". 
(we'll study a time wave package later on). It can also be called the "angular spectrum".

Now we have our solution, complete with the time factor:

            Ex, z, t  A w

2 
  t 

 
1

4
k2 w2


 x k  z k0

2  k2

k   (5.2.5)  

This cannot be integrated in a closed form, but we can do an approximation.

5.2.2 Paraxial approximation

Let’s find an approximation to do the ingration for the beam. Let's look at the integral:

                                             
 

1
4
k2 w2

 k x  k0
2 k2 z k

If z is very large (far field) and the beam is paraxial (mostly in the propagation axis), we can think that kz is the 
dominant term and kx is small. Then, we can approximate:
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dominant term and kx is small. Then, we can approximate:

k0
2   k2  kn2  k2  kn 1  k2

kn2  kn 1  k2

2 kn2   kn 
k2

2 kn


 

1
4
k2 w2

 k x  k0
2 k2 z k  

 
1
4
k2 w2

 k x  kn z
k2

2 kn
z k

                                                           =  kn z 
 

1

4
k2 w2

 k x 
k2

2 kn
z k

                                                           =  kn z 
 

1

4
k2 w2  

2 z
kn

  k x k

Now, we can perform integration. Define   P  w2   2 z
kn









1

4
k2 P  k x k

ConditionalExpression
2  

x2

P

P
, ReP  0

Hence:

w . ; n  . ; z  . ;

 kn z
2  

x2

P

P
. P  w2  

2 z

kn

2  
 z kn

x2

w2
2  z

kn

w2  2  z
kn

Thus:  Ex, z, t  A w

2 

2  

 z kn
x2

w2
2  z

kn

w2
2  z
kn

  t  A 1

1 2  z

w2 kn


 z kn

x2

w2
2  z

kn   t   (5.2.6)

Show , BoxRatios  1, 1, 0.1
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5.3 Illustration of some properties of 2D Gaussian beam

5.3.1 Phase front.
The most obvious thing we see in the Gaussian beam calculation above is the circular “wave front”  

The key insight to the wavefront is in this term: 
 z kn

x2

w2
2  z

kn    (5.3.1) 
Let’s do some reduction to separate the amplitude and the phase:

 z kn 
x2

w2
2  z
kn

  kn  z  x2

 kn w22 z
   kn  z 

x2 2 z kn w2

2 z kn w2 2 z kn w2


                          =  kn  z  x2 2 z
4 z2 kn2 w4   x2 kn 2 w2

4 z2 kn2 w4

                          =  kn z  x2

2 z kn2 w4

2 z

 x2

w2
1

1 2 z

kn w2

2       kn  z  x2

2 z  
x2

w2
1

1 2 z

kn w2

2

But:  kn  z  x2

2 z    kn z2  x2   kn r

This is a circular (cylindrical) wavefront indeed with the term  kn r

  0.6328 ; n  1; w  0.5 ; kn  2  n   ;

ParametricPlot3Dr Cos, r Sin, Re kn r , r, 0, 5,
, 0, 2 , Mesh  False, PlotPoints  40, 15, BoxRatios  1, 1, 0.1

Let’s compare:

   

A natural concept in describing wave is "phase front". We commonly think of "wave front" in 
layman term. It's the same. A phase front is a surface of all points that have the same continuous 
phase. Mathematically, if we express a wave as:
 x,y,z (where [x,y,z] is real), then, any surface defined by [x,y,z]=constant is a phase front. 
(other name: cophasal surfaces, wave surfaces)

Notice the phasefront, but what else do we need? 

5.3.2 Beam divergence
For the Gaussian beam, the amplitude is NOT circularly uniform, but it is rather distribute in the center lobe:   
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For the Gaussian beam, the amplitude is NOT circularly uniform, but it is rather distribute in the center lobe:   

We need a term that make a “lobe” in the center along the propagation and the lobe should have a constant angular 
divergence. 

We now can examine the second term (amplitude in the x-dimension) of the exponent:

                  
 z kn

x2

w2
2  z

kn   kn r 


x2

1
2 z

kn w2

2

  kn r 


x2

w2 2 z

kn w2

2 kn w2

2 z

2
1

                                        kn r 


xz2


2

kn w


2 kn w2

2 z

2
1

  kn r 


Tan2


2

kn w


2 kn w2

2 z

2
1

                                        kn r 


Tan2


n

 w


2 kn w2

2 z

2
1

What does the term 


Tan2


n

 w


2 kn w2

2 z

2
1

 tell us?  It is a Gaussian profile with farfield divergence angle , and for z-> :

                                                      


Tan2


n

 w


2

 


Tan2

Tan02              (5.3.2a) 
where:                                                 Tan0 

n
w                    (5.3.2b)        

In deed, this is the term that gives is the Gaussian profile along the propagation direction and with a divergence 
angle 0

  0.6328 ; n  1; w  0.5 ; kn  2  n   ;

ParametricPlot3Dr Cos, r Sin, 


Tan2



n  w

2 kn w2

2 r Sin

2

1

, r, 0, 5,

, 0, 2 , Mesh  False, PlotPoints  100, 15, BoxRatios  1, 1, 0.1

Now, we see that: 

  x  => 
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Hence, we shows that we can describe a beam with a wide range of divergence behavior like a Gaussian by using 
the plane wave basis set.

5.4 Linear superposition in time (discussion only)

Summary

Summary:
1. Any light packet (spatially as well as temporally) can be decomposed as a sum of many light 
components. 
2. The components can be pure harmonic plane waves (this is Fourier optics) or harmonic waves 
in other systems
3. The behavior of the beam is the net sum of those of the components
4. Most important to develop an  intuitive understand of the behavior of beam: "natural" description 
of the beam, not just any brute force solution
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