ECE 6340

Fall 2005

Project

INSTRUCTIONS 

This project is due on the last day of class. Please work individually on the project, and do not discuss it with anyone other than the instructor. 

PROBLEM DESCRIPTION

A microstrip line is shown below. The line extends to infinity in the ( z directions. A signal generator is attached at z = 0 with the polarity shown. The signal generator applies a voltage source that is 
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Note that vs (t) is not the same as the transmission line voltage vi (t) at the input (z = 0). However, input voltage at z = 0 can be easily found from the source voltage as 
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FORMULATION AND CALCULATION 

Formulate the transmission line voltage v(z, t) and current i(z, t) at a point  z > 0, giving enough details to make the derivation complete. However, you do not need to re-derive anything in your write-up that is already derived in the class notes. Then implement the calculation of the voltage and current using any software package that you prefer. 

RESULTS

A) Frequency-Domain

1. Plot the characteristic impedance versus frequency from 0 to 100 GHz. 

2. Plot the effective relative permittivity versus frequency from 0 to 100 GHz. 

3. Plot the phase and group velocities versus frequency from 0 to 100 GHz.

4. Plot the conductor attenuation 
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and the dielectric attenuation 
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 versus frequency from 0 to 100 GHz.

B) Time-Domain

a) Voltage

1. Plot (on the same graph if possible) the transmission-line voltage v (z, t) versus t for z = 1 cm,   2 cm, 4 cm, 8 cm, and 16 cm. Assume a lossless line (no dielectric or conductor loss).

2. Repeat part (1) above assuming only dielectric losses. 

3. Repeat part (1) above assuming only conductor losses. 

4. Repeat part (1) above assuming both dielectric and conductor losses. 

b) Current

1. Plot (on the same graph if possible) the transmission-line voltage i (z, t) versus t for z = 1 cm,   2 cm, 4 cm, 8 cm, and 16 cm. Assume a lossless line (no dielectric or conductor loss).

2. Repeat part (1) above assuming only dielectric losses. 

3. Repeat part (1) above assuming only conductor losses. 

4. Repeat part (1) above assuming both dielectric and conductor losses. 

Validation

It is strongly recommended that you validate your numerical integration by first calculating the pulse propagation for a lossless line (
[image: image6.wmf]0

cd

aa

==

) with no dispersion (
[image: image7.wmf](

)

(

)

0

effeff

rr

f

ee

=

 and 
[image: image8.wmf](

)

(

)

00

0

ZfZ

=

). In this case, the voltage and current pulses should propagate at the phase velocity 
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without changing shape, and 
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FORMAT GUIDELINES

Your project should consist of a write-up that contains an Abstract, an Introduction section, a Formulation section, a Results section, and a Conclusions Section. You may also include a References section and an Appendix, if appropriate. The project should be done on a word processor.
The Results section should provide the results that are required, and also provide a thorough discussion of the results. 
A significant part of your grade will depend on the accuracy of your results, so you are encouraged to do as much numerical checking as possible to have confidence in your results. 

A significant part of your grade will also depend on the thoroughness of your discussion and your interpretation of the results. 
You will also be graded on the neatness and quality of your write-up, and the quality of your results. Please use good scales and labeling when you plot your results so that the plots are easy to read and look nice. 

NUMERICAL ISSUES
Numerical experimentation will probably be required to make sure that you have a sufficient limit of integration in 
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 for the inverse Fourier transform integral, and that you have a sufficient sample density when you compute the integral (assuming that you program the integration yourself). You may wish to plot the function 
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 to help you with this. 

When you calculate the group velocity, you may use a numerical differentiation (e.g., a central-difference approximation to the derivative). Some experimentation with the interval size
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 in the numerical formula may be required to make sure that the results are accurate. 
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MICROSTRIP GEOMETRY
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PARAMETERS OF MICROSTRIP LINE: 
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 (loss tangent of substrate) 

h = 1.0 [mm]

w = 1.0 [mm]

t = 0.018 [mm] (corresponding to 0.5 oz copper /ft2 for the copper cladding)
( = 3.0 ( 107 [S/m]  (for copper conductors)

Note: 
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 (the real part of the complex effective permittivity). Hence, 
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APPROXIMATE DESIGN FORMULAS 

Note: In these formulas, (r is the real part of the complex effective permittivity. That is, 
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Phase Constant
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where the “effective relative permittivity” is 
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Characteristic Impedance
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where
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Conductor Loss

Note: in these formulas, 
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 is taken as 
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where
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 (This is the skin depth, assuming the metal is nonmagnetic).

Dielectric Loss
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where the “filling factor” q is 
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