ECE 6341

Spring 2016

Prof. David R. Jackson
ECE Dept.

Notes 1

Fields in a Source-Free Region

Source-free homogeneous region

$$
\begin{gathered}
(\varepsilon, \mu) \\
(\underline{E}, \underline{H})
\end{gathered}
$$

Note: For a lossy region, we replace

$$
\begin{aligned}
& \mathcal{E} \longrightarrow \mathcal{E}_{c} \\
\varepsilon_{c}= & \varepsilon-j(\sigma / \omega) \\
= & \varepsilon_{c}^{\prime}-j \varepsilon_{c}^{\prime \prime} \\
= & \varepsilon_{c}^{\prime}(1-j \tan \delta) \\
= & \varepsilon_{0} \varepsilon_{r c}^{\prime}(1-j \tan \delta) \\
= & \varepsilon_{0} \varepsilon_{r c}
\end{aligned}
$$

$$
\begin{aligned}
\nabla \times \underline{E} & =-j \omega \mu \underline{H} \\
\nabla \times \underline{H} & =j \omega \varepsilon \underline{E} \\
\nabla \cdot \underline{E} & =0 \\
\nabla \cdot \underline{H} & =0
\end{aligned}
$$

Fields in a Source-Free Region (cont.)

(a) $\quad \nabla \cdot \underline{H}=0$

$$
\Rightarrow \quad \underline{H}=\frac{1}{\mu} \nabla \times \underline{A}
$$

Ampere's law:

$$
\underline{E}=\frac{1}{j \omega \varepsilon} \nabla \times\left(\frac{1}{\mu} \nabla \times \underline{A}\right)
$$

(b) $\quad \nabla \cdot \underline{E}=0$

$$
\Rightarrow \quad \underline{E}=-\frac{1}{\varepsilon} \nabla \times \underline{F}
$$

Faraday's law:

$$
\underline{H}=-\frac{1}{j \omega \mu} \nabla \times\left(-\frac{1}{\varepsilon} \nabla \times \underline{F}\right)
$$

The field can be represented using either \underline{A} or \underline{F}

Fields in a Source-Free Region (cont.)

Case (a)

Assume we use \underline{A} :

$$
\underline{H}=\frac{1}{\mu} \nabla \times \underline{A}
$$

$$
\begin{gathered}
\nabla \times \underline{E}=-j \omega \mu \underline{H} \\
\nabla \times \underline{E}=-j \omega(\nabla \times \underline{A}) \\
\nabla \\
\nabla \times(\underline{E}+j \omega \underline{A})=\underline{0} \\
\forall \\
\underline{E}+j \omega \underline{A}=-\nabla \Phi
\end{gathered}
$$

Hence $\quad \underline{E}=-\nabla \Phi-j \omega \underline{A}$ form for the electric field.

Next, use $\quad \nabla \times \underline{H}=j \omega \varepsilon \underline{E}$

$$
\begin{gathered}
\frac{1}{\mu} \nabla \times(\nabla \times \underline{A})=j \omega \varepsilon(-\nabla \Phi-j \omega \underline{A}) \\
\nabla \times(\nabla \times \underline{A})-k^{2} \underline{A}=-j \omega \varepsilon \mu \nabla \Phi \\
\nabla \\
\nabla(\nabla \cdot \underline{A})-\nabla^{2} \underline{A}-k^{2} \underline{A}=-j \omega \varepsilon \mu \nabla \Phi
\end{gathered}
$$

Recall: $\nabla^{2} \underline{A} \equiv \nabla(\nabla \cdot \underline{A})-\nabla \times(\nabla \times \underline{A})$

Fields in a Source-Free Region (cont.)

$$
\nabla(\nabla \cdot \underline{A})-\nabla^{2} \underline{A}-k^{2} \underline{A}=-j \omega \varepsilon \mu \nabla \Phi
$$

Choose $\quad \nabla \cdot \underline{A}=-j \omega \varepsilon \mu \Phi \quad$ (Lorenz Gauge)

Then

$$
\nabla^{2} \underline{A}+k^{2} \underline{A}=\underline{0}
$$

This is the "vector
Helmholtz equation" for the magnetic vector potential.

Fields ìn a Source-Free Region (cont.)

Case (b)

Assume we use \underline{F} :

$$
\underline{E}=-\frac{1}{\varepsilon} \nabla \times \underline{F}
$$

Invoking duality:

$$
\underline{H}=-\nabla \Psi-j \omega \underline{F}
$$

$\Psi=$ magnetic scalar potential

Choose $\quad \nabla \cdot \underline{F}=-j \omega \varepsilon \mu \Psi$

We then have:

$$
\nabla^{2} \underline{F}+k^{2} \underline{F}=\underline{0}
$$

Fields ìn a Source-Free Region (cont.)

To be even more general, let

$$
\begin{aligned}
& \underline{E}=\underline{E}^{a}+\underline{E}^{f} \\
& \underline{H}=\underline{H}^{a}+\underline{H}^{f}
\end{aligned}
$$

where ($\underline{E}^{a}, \underline{H}^{a}$) and ($\underline{E}^{f}, \underline{H}$) each satisfy Maxwell's equations.
(This is an arbitrary partition.)

The representation is not unique, since there are many ways to split the field. For example, we could use

$$
\begin{aligned}
& \underline{E}^{a}=0.1 \underline{E} \\
& \underline{E}^{f}=0.9 \underline{E}
\end{aligned}
$$

Fields in a Source-Free Region (cont.)

We construct the vector potentials so that

$$
\begin{aligned}
& \underline{A} \rightarrow\left(\underline{E}^{a}, \underline{H}^{a}\right) \\
& \underline{F} \rightarrow\left(\underline{E}^{f}, \underline{H}^{f}\right)
\end{aligned}
$$

We then have

$$
\begin{aligned}
& \underline{E}=\frac{1}{j \omega \mu \varepsilon} \nabla \times(\nabla \times \underline{A})-\frac{1}{\varepsilon} \nabla \times \underline{F} \\
& \underline{H}=\frac{1}{\mu} \nabla \times \underline{A}+\frac{1}{j \omega \mu \varepsilon} \nabla \times(\nabla \times \underline{F})
\end{aligned}
$$

Fields in a Source-Free Region (cont.)

Depending on the type of source (outside the source-free region) that is producing the field within the source-free region, it may be more convenient to represent the field using only \underline{A} or only \underline{F}.

EXAMPLES

Electric dipole: choose only $\underline{A} \quad(\underline{A}$ is in the same direction as \underline{J})
Magnetic dipole: choose only \underline{F} (\underline{F} is in the same direction as \underline{M})

This solution was discussed in ECE 6340.

In principle, one could represent the field of the electric dipole using the \underline{F} vector potential, but it would be much more difficult than with the \underline{A} vector potential!

In a source-free homogeneous region, we can always represent the field using the following form:

$$
\begin{aligned}
& \underline{A}=\underline{\hat{z}} A_{z}(x, y, z) \\
& \underline{F}=\underline{\hat{\imath}} F_{z}(x, y, z)
\end{aligned}
$$

$\underline{\hat{Z}}$ is an arbitrary fixed direction (called here the "pilot vector" direction).
(A proof of this theorem is given later.)

This theorem gives us a systematic way to represent the fields in a source-free region, involving only two scalar field components.

Note: A simpler solution often results if we choose the best direction for the pilot vector.

EXAMPLE

An infinitesimal unit-amplitude electric dipole pointing in the z direction:

$$
\underline{A}=\underline{\hat{z}} A_{z}(x, y, z)
$$

The solution is $\quad A_{z}(x, y, z)=\mu \frac{e^{-j k r}}{4 \pi r} \quad \begin{gathered}\text { We only need } A_{z} \\ \text { and not } F_{z} .\end{gathered}$

If we had picked the pilot vector direction to be something different, such as x, we would need BOTH A_{x} and F_{x}.

$\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem (cont.)

$\mathrm{TE}_{z} / \mathrm{TM}_{z}$ property of Fields

Consider, for example,

$$
\begin{aligned}
\underline{H}^{a} & =\frac{1}{\mu} \nabla \times\left(\underline{\hat{z}} A_{z}\right) \quad \underline{\underline{F}}=\underline{\hat{z}} \\
& =\frac{1}{\mu}\left(A_{z} \nabla \times \underline{\hat{z}}-\underline{\hat{z}} \times \nabla A_{z}\right) \Rightarrow H_{z}^{a}=0
\end{aligned}
$$

$$
\begin{aligned}
& \underline{A}=\underline{\hat{z}} A_{z}(x, y, z) \\
& \underline{F}=\underline{\hat{z}} F_{z}(x, y, z)
\end{aligned}
$$

Hence, $\quad H_{z}^{a}=0 \quad\left(A_{z} \rightarrow \mathrm{TM}_{z}\right)$
Similarly, $\quad E_{z}^{f}=0 \quad\left(F_{z} \rightarrow T E_{z}\right)$

The fields are found as follows:

$$
\psi=A_{z}
$$

$$
\begin{array}{ll}
E_{z}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi & H_{x}=\frac{1}{\mu} \frac{\partial \psi}{\partial y} \\
E_{x}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} \psi}{\partial x \partial z} & H_{y}=-\frac{1}{\mu} \frac{\partial \psi}{\partial x} \\
E_{y}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} \psi}{\partial y \partial z} & H_{z}=0
\end{array}
$$

Note: There is a factor μ difference with the Harrington text.

$\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem (cont.)

$$
\psi=F_{z}
$$

$$
\begin{array}{ll}
H_{z}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) \psi & E_{x}=-\frac{1}{\varepsilon} \frac{\partial \psi}{\partial y} \\
H_{x}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} \psi}{\partial x \partial z} & E_{y}=\frac{1}{\varepsilon} \frac{\partial \psi}{\partial x} \\
H_{y}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} \psi}{\partial y \partial z} & E_{z}=0
\end{array}
$$

Note: There is a factor ε difference with the Harrington text.

$\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem (cont.)

From the vector Helmholtz equation we have:

$$
\nabla^{2} \underline{A}+k^{2} \underline{A}=\underline{0}
$$

Taking the z component gives: $\underline{\hat{z}}\left(\nabla^{2} A_{z}\right)+\underline{\hat{z}}\left(k^{2} A_{z}\right)=\underline{0}$

$$
\text { or } \quad \nabla^{2} A_{z}+k^{2} A_{z}=0
$$

Similarly, $\quad \nabla^{2} F_{z}+k^{2} F_{z}=0$

Hence, any EM problem in a source-free region reduces to solving the scalar Helmholtz equation:

$$
\nabla^{2} \psi+k^{2} \psi=0
$$

Summary of $\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Result

Proof of $\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem

Apply equivalence principle:

Keep original material and fields inside S. Put zero fields outside S.
Put (ε, μ) outside S.

Proof of $\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem

$$
\begin{aligned}
\underline{J}_{s}^{e} & =(-\underline{\hat{n}}) \times \underline{H} \\
\underline{M}_{s}^{e} & =-((-\underline{\hat{n}}) \times \underline{E})
\end{aligned}
$$

Proof of $\mathrm{TE}_{z} / \mathrm{TM}_{z}$ Theorem (cont.)

Consider the z component of the currents:

$$
\begin{aligned}
\underline{J}_{z}^{e} & \rightarrow A_{z} \\
\underline{M}_{z}^{e} & \rightarrow F_{z}
\end{aligned}
$$

(from 6340)

Also, from a horizontal dipole source, we can show that:

$$
\begin{gathered}
\underline{J}_{x, y}^{e} \rightarrow A_{z}+F_{z} \\
\underline{M}_{x, y}^{e} \rightarrow A_{z}+F_{z}
\end{gathered}
$$

This will be established later in the class notes and the homework by solving the problem of a horizontal (x or y directed) dipole source using A_{z} and F_{z}.

Hence, the fields in the source-free region due to all of the equivalent currents may be represented with A_{z} and F_{z}.

Non-Uniqueness of Potentials

A_{z} and F_{z} are not unique.
To illustrate, consider: $\left\{\begin{array}{l}A_{z}=c_{1} e^{-j k z}, \quad k=\omega \sqrt{\mu \varepsilon} \\ F_{z}=0 \quad\left(\mathrm{TM}_{z} \text { field }\right)\end{array}\right.$

$$
\left.\begin{array}{l}
E_{z}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) A_{z}=0 \\
E_{x}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} A_{z}}{\partial x \partial z}=0 \\
E_{y}=\frac{1}{j \omega \mu \varepsilon} \frac{\partial^{2} A_{z}}{\partial y \partial z}=0
\end{array}\right\} \quad \begin{aligned}
& \text { This set of potentials } \\
& \text { produces a null field! }
\end{aligned} \quad \begin{aligned}
& \underline{H}=-\frac{1}{j \omega \mu} \nabla \times \underline{E}=\underline{0}
\end{aligned}
$$

Hence, adding this set of potentials to a solution does not change the fields.

