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Leaky Modes 
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f  > fs  We will examine the solutions as 
the frequency is lowered. 
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Leaky Modes (cont.) 

a)  f  > fc       SW+ISW 
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TM1 Mode 

The TM1 surface wave is 
above cutoff. There is also an 

improper TM1 SW  mode.  

Note: There is also a TM0 mode, but this is not shown 



Leaky Modes (cont.) 
a)  f  > fc       SW+ISW 
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The red arrows indicate the direction of 
movement as the frequency is lowered. 
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b)  f  = fc       

Leaky Modes (cont.) 
v   

u      
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TM1 Mode 

The TM1 surface 
wave is now at 
cutoff.  There is 

also an improper 
SW mode. 



b)  f  = fc       

Leaky Modes (cont.) 
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c)  f  < fc      2  ISWs       

Leaky Modes (cont.) 

v   

u      
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The TM1 surface wave is now 
an improper SW, so there are 

two improper SW modes.  

TM1 Mode 



c)  f  < fc       2  ISWs       

Im kz  
k1 

Re kz  
k0 

Leaky Modes (cont.) 
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The two improper SW 
modes approach each other.  

v  

u     

TM1 Mode 

#1 #2 

#1 

#2 



d)  f  = fs  

Leaky Modes (cont.) 

v   

u      
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The two improper SW 
modes now coalesce. 

TM1 Mode 



d)  f  = fs  

Leaky Modes (cont.) 
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Im kz  
k1 

Re kz  
k0 

Splitting point 

v  

u     

TM1 Mode 



e)   f  < fs 

Leaky Modes (cont.) 
v   

u      

The graphical solution fails! (It cannot show us complex leaky-wave modal solutions.) 
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The wavenumber kz 
becomes complex (and 
hence so do u and v). 



Leaky Modes (cont.) 
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Im kz  

k1 

e)   f  < fs      2 LWs  

Re kz  
k0 

LW 

LW 

This solution is rejected as 
completely non-physical since it 
grows with distance z (αz < 0). 

The growing solution is the complex 
conjugate of the decaying one (for a 
lossless slab).  

z z zk jβ α= −



Leaky Modes (cont.) 

Proof of conjugate property (lossless slab) 

Take conjugate of both sides: 
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Hence, the conjugate is a valid solution. 

TRE: 
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TMx Mode 



Leaky Modes (cont.) 

a)  f  > fc 
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Im kz
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k0
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b)  f  = fc       

Im kz
k1

Re kz

k0c)  f  < fc 
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d)  f  = fs  

Im kz

k1
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k0

LW

LW
e)  f  < fs  

Here we see a 
summary of the 

frequency behavior for 
a typical surface-wave 

mode (e.g., TM1). 

 TM0: Always remains a 
proper physical SW 
mode.  

 TE1: Goes from proper 
physical SW to 
nonphysical ISW; remains 
nonphysical ISW down to 
zero frequency. 

Exceptions: 

Im kz

k1

Re kz

k0



Leaky Modes (cont.) 
A leaky mode is a mode that has a complex wavenumber (even for a 
lossless structure). It loses energy as it propagates due to radiation. 
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Leaky Modes (cont.) 

One interesting aspect: The fields of the leaky mode must be improper 
(exponentially increasing). 

Proof: 
2 2 1/2

0 0( )x zk k k= −

2 2 2
0 0x zk k k= −

( ) ( )2 22
0x x z zj k jβ α β α− = − −

2 2 2 2 2
02 2x x x x z z z zj k jβ α β α β α α β− − = − + +

x x z zβ α α β= −Taking the imaginary part of both sides: 
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Notes: 
βz > 0 (propagation in +z direction) 
αz > 0 (propagation in +z direction) 

βx > 0 (outward radiation) 



Leaky Modes (cont.) 
For a leaky wave excited by a source, the exponential growth will only 
persist out to a “shadow boundary”  once a source is considered. 
 
This is justified later in the course by an asymptotic analysis:  
In the source problem, the LW pole is only captured when the observation point lies within 
the leakage region (region of exponential growth). 
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θ0 

z 

Power flow 

Leaky mode 

β
x 

Region of 
exponential 

growth 

Region of 
weak fields 

z z zk jβ α= −Source 

A hypothetical source launches a leaky wave going in one direction. 



A requirement for a leaky mode to be strongly physical is that the wavenumber must 
lie within the “physical region” where is wave is a fast wave* (βz = Re kz < k0). 

Leaky Modes (cont.) 

A leaky-mode is considered to be “physical” if we can measure a 
significant contribution from it along the interface (θ0 = 90o) . 

Basic reason: The LW pole is not captured in the complex plane in 
the source problem if the LW is a slow wave. 

18 
* This is justified by asymptotic analysis, given later. 



f)  f  < fp       Physical  LW  

Physical leaky wave region (Re kz < k0)  

Leaky Modes (cont.) 
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Im kz  

k1 

Re kz  
k0 LW 

f  = fp 

Physical Non-physical 

Note: The physical region is 
also the fast-wave region. 



If the leaky mode is within the physical (fast-wave) region, a  
wedge-shaped radiation region will exist. 

Leaky Modes (cont.) 

This is illustrated on the next two slides.  
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0sinzβ β θ=

2 2 2 2 2 2
0x z x zk k kβ β β= + ≈ + =

0 0sinz kβ θ≈Hence 

Leaky Modes (cont.) 

(assuming small attenuation) 

ˆ ˆx zx zβ β β= +

Significant radiation requires βz < k0.  
21 

θ0 

z 

Power flow 

Leaky mode 

x 

z z zk jβ α= −Source 

β



( )1
0 0sin /z kθ β−≈

Leaky Modes (cont.) 
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θ0 

z 

Power flow 

Leaky mode 

x 

z z zk jβ α= −Source 

β

As the mode approaches a slow wave (βz → k0), the leakage region 
shrinks to zero (θ0 → 90o). 



Leaky Modes (cont.) 
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Note: 
A beam pointing at an 
angle in “visible space” 

requires that kz < k0. 

( )0 0sinz j k d njk z

z nd
e e θ−−

=
=

( )0 0sinn k d nφ θ= −

Equivalent phase constant: 



Leaky Modes (cont.) 

24 

The angle θ0 also forms the boundary between regions where the leaky-
wave field increases and decreases with radial distance ρ  in cylindrical 
coordinates  (proof omitted*). 

θ0 

z 

Power flow 

Leaky mode 

x 

Fields are 
decreasing 

radially 

z z zk jβ α= −Source 

β
Fields are 
increasing 

radially 

ρ 

*Please see one of the homework problems. 

Recall: For a plane wave in a lossless region, 
the α vector is perpendicular to the β vector.  



The aperture field may strongly resemble the field of the leaky 
wave (creating a good leaky-wave antenna). 

Leaky Modes (cont.) 

Requirements: 

1) The LW should be in the physical region (i.e., a fast wave). 
2) The amplitude of the LW should be strong. 
3) The attenuation constant of the LW should be small.  

A non-physical LW usually does not contribute significantly to the aperture field 
(this is seen from asymptotic theory, discussed later). 

Excitation problem: 
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Line source 

Bi-directional Leaky wave: kz = βz-jαz 



Leaky Modes (cont.) 

Summary of frequency regions: 

a)  f  > fc       physical SW (non-radiating, proper) 

b)  fs <  f  < fc      non-physical ISW (non-radiating, improper) 

c)  fp <  f  < fs      non-physical LW (radiating somewhat, improper) 

d)  f  < fp      physical LW (strong focused radiation, improper) 

The frequency region  fp <  f  < fc   is called the “spectral-gap” region 
 (a term coined by Prof. A. A. Oliner). 

The LW mode is usually considered to be nonphysical in the spectral-gap region.  

26 



Leaky Modes (cont.) 
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LW 

f  = fp 
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ISW 

f  = fc 

f  = fs 

Spectral-gap region 

fp <  f  < fc 

Prof. A. A. Oliner 



Field Radiated by Leaky Wave 

( ) ( )1, 0, ,
2

x zjk x jk z
y y z zE x z E k e e dk

π

∞
− −

−∞

= ∫ 

( )0,
LW
zjk z

yE z e−=

( )
( )22

0, 2
LW
z

y z LW
z z

kE k j
k k

 
 =
 − 



28 

For x > 0: 

Then 

Line source 
z 

x 

Aperture 

( )1/22 2
0x zk k k= −

Note: The wavenumber kx is 
chosen to be either positive 
real or negative imaginary. 

Assume: 

TEx leaky wave 
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Radiation occurs at 60o. 
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Radiation occurs at 60o. 
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The LW is nonphysical. 



x / λ0 

Leaky-Wave Antennas 

Near field 

Far field 
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Leaky-Wave Antennas (cont.) 

Far-Field Array Factor (AF) 
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x / λ0 
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Leaky-Wave Antennas (cont.) 
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A sharp beam occurs at 0 0sin zk θ β≈
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Leaky-Wave Antennas (cont.) 
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The two beams merge to becomes a broadside beam when βz< αz 



x / λ0 

Leaky-Wave Antennas (cont.) 
Two-layer (substrate/superstrate) structure excited by a line source. 
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D. R. Jackson and A. A. Oliner, “A Leaky-Wave Analysis of the 
High-Gain Printed Antenna Configuration,” IEEE Trans. Antennas 
and Propagation, vol. 36, pp. 905-910, July 1988. 



W. W. Hansen, “Radiating electromagnetic waveguide,” Patent, 1940, U.S. Patent No. 2.402.622. 

a
b

x

z

y

2
2
0z k

a
πβ  ≈ −  

 

0z kβ <Note: 
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•W. W. Hansen, “Radiating electromagnetic waveguide,” Patent, 1940, U.S. Patent No. 2.402.622. 

y This is the first leaky-wave antenna invented. 

Slotted waveguide 

Leaky-Wave Antennas (cont.) 



x / λ0 The slotted waveguide illustrates in a simple way why the field 
is weak outside of the “leakage region.”  
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Top view 

Source 

Slot 

Region of strong fields (leakage region) 

Waveguide a TE10 mode 

Leaky-Wave Antennas (cont.) 



Another variation: Holey waveguide 

2
2
0z k

a
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Leaky-Wave Antennas (cont.) 



x / λ0 Another type of leaky-wave antenna, based on 
 substrate-integrated waveguide 
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Leaky-Wave Antennas (cont.) 

Substrate-integrated waveguide (SIW) 



x / λ0 

41 
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Vias Microstrip line 
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From aperture field
Leaky wave
Surface wave
Leaky + surface waves

J. Liu, D. R. Jackson, and Y. Long, “Substrate 
Integrated Waveguide (SIW) Leaky-Wave 
Antenna With Transverse Slots,” IEEE Trans. 
Antennas and Propagation, vol. 60, pp. 20-29, 
Jan.  2012. 

Leaky-Wave Antennas (cont.) 

The transverse slots allow 
for magnetic currents that 
are transverse, which can 

radiate at endfire. 
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( ) ( ) ( ) 02
0, zjk zz H k eρψ ρ ρ −=In the air region: 

k jρ ρ ρβ α= −

( )2 2
0 0zk k kρ= −

Leaky-Wave Antennas (cont.) 

Broadside Beam 

Source 

Conical Beam 

Source 

ρ ρβ α<ρ ρβ α>

2-D Leaky-Wave Antenna 



Implementation at millimeter-wave frequencies (62.2 GHz) 

εr1 = 1.0, εr2 = 55, h = 2.41 mm, t = 0.484 mm, a = 3.73 λ0 (radius) 
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Leaky-Wave Antennas (cont.) 
x / λ0 

2-D Leaky-Wave Antenna 



x / λ0 

(E-plane shown on one side, H-plane on the other side) 
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Leaky-Wave Antennas (cont.) 
2-D Leaky-Wave Antenna 
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G. von Trentini, “Partially Reflecting Sheet Arrays,” IEEE Trans. Antennas Propagat., vol. 4, pp. 666-671, Oct. 1956. 

The concept of using a 
“partially reflecting surface” 

(PRS) to create narrow 
beams goes back to von 

Trentini in 1956. 
 

It was not understood that 
this is a leaky-wave effect. 

Leaky-Wave Antennas (cont.) 
2-D Leaky-Wave Antenna 
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z0 x 
ε1, µ1 

ε2, µ2 
ε1, µ1 
ε1, µ1 ε2, µ2 

ε2, µ2 
h / 2 

dipole 

Working with Prof. Oliner, results were extended to other planar 2D 
leaky-wave antennas using different PRS structures. 

Today these structures are 
often called “Fabry-Pérot 

resonant cavity antennas.” 

Leaky-Wave Antennas (cont.) 
2-D Leaky-Wave Antenna 
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Table showing beamwidth properties 

Slot-PRS structure 

(normalized susceptance of PRS) 

T. Zhao, D. R. Jackson, and J. T. Williams,“ General formulas for 
2D leaky wave antennas,” IEEE Trans. Antennas and 
Propagation, vol. 53, pp. 3525-3533, Nov. 2005.  

Leaky-Wave Antennas (cont.) 
2-D Leaky-Wave Antenna 
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Leaky Waves on MIC Lines 
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 It was found that two different types of leaky modes could exist on microwave 
integrated circuit (MIC) (i.e., printed-circuit) lines: 

 

 leakage into the TM0 surface wave (SW)  
 leakage into SW + space 

0 0/ cosz kβ θ=

0 0
/ cosz TM TMkβ θ=

0θ θ=

0TMθ θ=



Leaky Waves on MIC Lines (cont.) 
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Leaky modes have been found on a variety of printed-circuit lines. 

 
 Microstrip line* 
 Coplanar waveguide 
 Coplanar strips 
 Slotline 
 
 
 Stripline with an air gap* 
 Microstrip with a top cover (low enough cover)  
 Conductor-backed coplanar waveguide 
 Conductor-backed slotline 

Leakage occurs at high frequency 

Leakage occurs at any frequency 

*Illustrated here with examples 



Leaky Waves on MIC Lines (cont.) 

50 

 Microstrip 

h = w = 1 mm, εr  = 2.2 

h w εr 

A physical leaky mode 
exists at high frequencies. 

The bound mode is the 
usual quasi-TEM 
microstrip mode. 

The leaky mode plotted here 
leaks into the TM0 surface wave. 

Normalized phase constant (β / k0) 
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RIM: real improper mode 
(similar to ISW of slab) 



Leaky Waves on MIC Lines (cont.) 
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 Microstrip 

h = w = 1 mm, εr  = 2.2 

h w εr 

The leaky mode interferes with the bound mode at high frequency, 
causing spurious oscillations in the current on the line. 
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Leaky Waves on MIC Lines (cont.) 
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Stripline with an air gap 

h = w = 1 mm, εr  = 2.22 

h 
δ 

h εr 

w εr 
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Leaky

β/k0

δ [mm]

A physical leaky mode exists even at low frequency, when the air gap is small. 

f  = 3.0 GHz 

 The leaky mode is the one that turns into the TEM stripline mode as the air gap vanishes. 
 The bound mode has a field that resembles a parallel-plate mode. 



Leaky Waves on MIC Lines (cont.) 
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h = w = 1 mm, εr  = 2.22 

The destructive interference between the bound mode and the leaky mode 
causes a null in the current on the strip. 
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Leaky Waves on MIC Lines (cont.) 
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 F. Mesa and D. R. Jackson, “Leaky Modes and High-Frequency Effects in Microwave Integrated Circuits,” article in 
Encyclopedia of RF and Microwave Engineering, John Wiley & Sons, Inc., 2005. 
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