

Spring 2016

Prof. David R. Jackson ECE Dept.

Notes 6

Leaky Modes

Note: There is also a TM₀ mode, but this is not shown

c) $f < f_c$ 2 ISWs

The graphical solution fails! (It cannot show us complex leaky-wave modal solutions.)

Proof of conjugate property (lossless slab)

TRE:
$$\mathcal{E}_r = \frac{(k_1^2 - k_z^2)^{1/2}}{(k_z^2 - k_0^2)^{1/2}} \tan\left[\left((k_1^2 - k_z^2)^{1/2}h\right)\right]$$
 TM_x Mode

Take conjugate of both sides:

$$\varepsilon_r = \frac{(k_1^2 - k_z^{*2})^{1/2}}{(k_z^{*2} - k_0^2)^{1/2}} \tan\left[\left((k_1^2 - k_z^{*2})^{1/2}h\right)\right]$$

Hence, the conjugate is a valid solution.

A leaky mode is a mode that has a complex wavenumber (even for a lossless structure). It loses energy as it propagates due to radiation.

$$x$$

$$f = \beta_z / \beta_x$$

$$\theta_0$$

$$k_z = \beta_z - j\alpha_z$$

$$\underline{\beta} = \operatorname{Re}(\underline{k}) = \operatorname{Re}(\underline{\hat{x}}k_x + \underline{\hat{z}}k_z) = \underline{\hat{x}}\beta_x + \underline{\hat{z}}\beta_z$$

One interesting aspect: The fields of the leaky mode must be improper (exponentially increasing).

$$\implies \beta_x^2 - \alpha_x^2 - j2\beta_x\alpha_x = k_0^2 - \beta_z^2 + \alpha_z^2 + j2\alpha_z\beta_z$$

Taking the imaginary part of both sides: $\beta_x \alpha_x = -\alpha_z \beta_z$

For a leaky wave excited by a source, the exponential growth will only persist out to a "shadow boundary" once a source is considered.

This is justified later in the course by an asymptotic analysis:

In the source problem, the LW pole is only captured when the observation point lies within the leakage region (region of exponential growth).

A hypothetical source launches a leaky wave going in one direction.

A leaky-mode is considered to be "physical" if we can measure a significant contribution from it along the interface ($\theta_0 = 90^\circ$).

A requirement for a leaky mode to be strongly <u>physical</u> is that the wavenumber must lie within the "physical region" where is wave is a <u>fast wave</u>* ($\beta_z = \text{Re } k_z < k_0$).

Basic reason: The LW pole is not captured in the complex plane in the source problem if the LW is a slow wave.

* This is justified by asymptotic analysis, given later.

f) $f < f_p$ Physical LW

Physical leaky wave region (Re $k_z < k_0$)

If the leaky mode is within the physical (fast-wave) region, a wedge-shaped radiation region will exist.

This is illustrated on the next two slides.

$$\underline{\beta} = \underline{\hat{x}}\beta_x + \underline{\hat{z}}\beta_z \qquad \beta_z = |\underline{\beta}|\sin\theta_0$$

$$\left|\underline{\beta}\right|^2 = \beta_x^2 + \beta_z^2 \approx k_x^2 + k_z^2 = k_0^2$$

(assuming small attenuation)

Hence $\beta_z \approx k_0 \sin \theta_0$ Significant radiation requires $\beta_z < k_0$.

 $\theta_0 \approx \sin^{-1} \left(\beta_z / k_0 \right)$

As the mode approaches a slow wave $(\beta_z \rightarrow k_0)$, the leakage region shrinks to zero $(\theta_0 \rightarrow 90^\circ)$.

Phased-array analogy

Equivalent phase constant:

$$e^{-jk_z z}\Big|_{z=nd} = e^{-j(k_0 d \sin \theta_0)n}$$

$$\implies k_z = k_0 \sin \theta_0$$

Note: A beam pointing at an angle in "visible space" requires that $k_z < k_0$.

The angle θ_0 also forms the boundary between regions where the leakywave field <u>increases</u> and *decreases* with radial distance ρ in cylindrical coordinates (proof omitted^{*}).

Recall: For a plane wave in a lossless region, the $\underline{\alpha}$ vector is perpendicular to the $\underline{\beta}$ vector.

*Please see one of the homework problems.

The aperture field may strongly resemble the field of the leaky wave (creating a good leaky-wave antenna).

Requirements:

- 1) The LW should be in the <u>physical</u> region (i.e., a fast wave).
- 2) The amplitude of the LW should be strong.
- 3) The attenuation constant of the LW should be small.

A non-physical LW usually does not contribute significantly to the aperture field (this is seen from asymptotic theory, discussed later).

Summary of frequency regions:

- a) $f > f_c$ physical SW (non-radiating, proper)
- b) $f_s < f < f_c$ non-physical ISW (non-radiating, improper)
- c) $f_p < f < f_s$ non-physical LW (radiating somewhat, improper)
- d) $f < f_p$ physical LW (strong focused radiation, improper)

The frequency region $f_p < f < f_c$ is called the "spectral-gap" region (a term coined by Prof. A. A. Oliner).

The LW mode is usually considered to be nonphysical in the spectral-gap region.

Prof. A. A. Oliner

Field Radiated by Leaky Wave

For
$$x > 0$$
: $E_y(x, z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{E}_y(0, k_z) e^{-jk_x x} e^{-jk_z z} dk_z$,
Assume: $E_y(0, z) = e^{-jk_z^{LW}|z|}$
Then $\tilde{E}_y(0, k_z) = 2j \left(\frac{k_z^{LW}}{k_z^2 - (k_z^{LW})^2}\right)$
Note: The wavenumber k_x is chosen to be either positive real or negative imaginary.

$$k_z^{LW} / k_0 = 1.5 - j0.02$$

The LW is nonphysical.

31

Leaky-Wave Antennas

Far-Field Array Factor (AF)

$$AF(\theta) = \int_{-\infty}^{\infty} E_{y}(0,z) e^{+j(k_{0}\sin\theta)z} dz$$
$$= \int_{-\infty}^{\infty} e^{-jk_{z}^{LW}|z|} e^{+j(k_{0}\sin\theta)z} dz$$
$$AF(\theta) = 2j \left(\frac{k_{z}^{LW}}{k_{0}^{2}\sin^{2}\theta - (k_{z}^{LW})^{2}}\right)$$

$$AF(\theta) = 2j \left(\frac{\beta_z - j\alpha_z}{k_0^2 \sin^2 \theta - (\beta_z - j\alpha_z)^2} \right)$$
$$|AF(\theta)| = 2 \left(\frac{|\beta_z - j\alpha_z|}{|k_0^2 \sin^2 \theta - \beta_z^2 + \alpha_z^2 + j2\alpha_z\beta_z|} \right)$$
$$|AF(\theta)| = 2 \left(\frac{\beta_z^2 + \alpha_z^2}{(k_0^2 \sin^2 \theta - \beta_z^2 + \alpha_z^2)^2 + (2\alpha_z\beta_z)^2} \right)^{1/2}$$

A sharp beam occurs at

 $k_0 \sin \theta_0 pprox eta_z$

The two beams merge to becomes a broadside beam when $\beta_z < \alpha_z$

$$AF(\theta) = 2j \left(\frac{\beta_z - j\alpha_z}{k_0^2 \sin^2 \theta - (\beta_z - j\alpha_z)^2} \right)$$

Two-layer (substrate/superstrate) structure excited by a line source.

D. R. Jackson and A. A. Oliner, "A Leaky-Wave Analysis of the High-Gain Printed Antenna Configuration," *IEEE Trans. Antennas and Propagation*, vol. 36, pp. 905-910, July 1988.

W. W. Hansen, "Radiating electromagnetic waveguide," Patent, 1940, U.S. Patent No. 2.402.622.

The slotted waveguide illustrates in a simple way why the field is weak outside of the "leakage region."

Top view

Another variation: Holey waveguide

Another type of leaky-wave antenna, based on substrate-integrated waveguide

Substrate-integrated waveguide (SIW)

2-D Leaky-Wave Antenna

In the air region:
$$\psi(\rho, z) = H_0^{(2)}(k_\rho \rho) e^{-jk_{z0}z}$$

 $k_\rho = \beta_\rho - j\alpha_\rho$
 $k_{z0} = (k_0^2 - k_\rho^2)$

2-D Leaky-Wave Antenna

Implementation at millimeter-wave frequencies (62.2 GHz)

 $\varepsilon_{r1} = 1.0, \ \varepsilon_{r2} = 55, \ h = 2.41 \text{ mm}, \ t = 0.484 \text{ mm}, \ a = 3.73 \ \lambda_0 \text{ (radius)}$

2-D Leaky-Wave Antenna

(E-plane shown on one side, H-plane on the other side)

2-D Leaky-Wave Antenna

The concept of using a "partially reflecting surface" (PRS) to create narrow beams goes back to von Trentini in 1956.

It was not understood that this is a leaky-wave effect.

G. von Trentini, "Partially Reflecting Sheet Arrays," IEEE Trans. Antennas Propagat., vol. 4, pp. 666-671, Oct. 1956.

2-D Leaky-Wave Antenna

Working with Prof. Oliner, results were extended to other planar 2D leaky-wave antennas using different PRS structures.

Today these structures are often called "Fabry-Pérot resonant cavity antennas."

2-D Leaky-Wave Antenna

Directive pencil beams at broadside or conical beams can be produced.

Table showing beamwidth properties

	E-plane	H-plane
General	$2c \sqrt{c - \sin^2 \theta}$	$2\left(\sqrt{\varepsilon - \sin^2 \theta}\right)^3$
Scan	$\frac{2c_r\sqrt{c_r}-\sin c_p}{\overline{D^2}+c_r}$	$\frac{2(\sqrt{v_r} \sin v_p)}{\overline{v_r}}$
case	$\pi B_L^2 \sin \theta_p \cos^2 \theta_p$	$\pi B_L^2 \sin \theta_p$
Broadside	$\frac{2}{\left \overline{B}_{L}\right }\sqrt{\frac{2\varepsilon_{r}^{3/2}}{\pi}}$	$\frac{2}{\left \overline{B}_{L}\right }\sqrt{\frac{2\varepsilon_{r}^{3/2}}{\pi}}$
Endfire	Narrow beam not possible	$\frac{2\left(\sqrt{\varepsilon_r-1}\right)^3}{\pi \overline{B}_L^2}$

$\left(\overline{B}_{L}=B_{L}\eta_{0}\right)$

(normalized susceptance of PRS)

T. Zhao, D. R. Jackson, and J. T. Williams," General formulas for 2D leaky wave antennas," *IEEE Trans. Antennas and Propagation*, vol. 53, pp. 3525-3533, Nov. 2005.

Leaky Waves on MIC Lines

It was found that two different types of leaky modes could exist on microwave integrated circuit (MIC) (i.e., printed-circuit) lines:

- Ieakage into the TM₀ surface wave (SW)
- Ieakage into SW + space

Physical surface - wave leakage : $k_0 < \beta < k_{TM_0}$ Physical space + surface - wave leakage : $\beta < k_0 < k_{TM_0}$

Leaky modes have been found on a variety of printed-circuit lines.

Leakage occurs at high frequency

- Microstrip line*
- Coplanar waveguide
- Coplanar strips
- Slotline
- Stripline with an air gap*
 Leakage occurs at any frequency
- Microstrip with a top cover (low enough cover)
- Conductor-backed coplanar waveguide
- Conductor-backed slotline

*Illustrated here with examples

Microstrip

Microstrip

Source on Line

The leaky mode interferes with the bound mode at high frequency, causing spurious oscillations in the current on the line.

Stripline with an air gap

A physical leaky mode exists even at low frequency, when the air gap is small.

- The leaky mode is the one that turns into the TEM stripline mode as the air gap vanishes.
- The bound mode has a field that resembles a parallel-plate mode.

Stripline with an air gap

References

- F. Mesa and D. R. Jackson, "Leaky Modes and High-Frequency Effects in Microwave Integrated Circuits," article in Encyclopedia of RF and Microwave Engineering, John Wiley & Sons, Inc., 2005.
 - D. Nghiem, J. T. Williams, D. R. Jackson, and A. A. Oliner, "Leakage of Dominant Mode on Stripline with a Small Air Gap," *IEEE Trans. Microwave Theory and Techniques*, Vol. 43, No. 11, pp. 2549-2556, Nov. 1995.
 - M. Freire, F. Mesa, C. Di Nallo, D. R. Jackson, and A. A. Oliner, "Spurious Transmission Effects due to the Excitation of the Bound Mode and the Continuous Spectrum on Stripline with an Air Gap," *IEEE Trans. Microwave Theory and Techniques*, Vol. 47, No. 12, pp. 2493-2502, Dec. 1999.

- D. Nghiem, J. T. Williams, D. R. Jackson, and A. A. Oliner, "Existence of a Leaky Dominant Mode on Microstrip Line with an Isotropic Substrate: Theory and Measurements," *IEEE Trans. Microwave Theory and Techniques*, Vol. 44, No. 10, pp. 1710-1715, Oct. 1996.
- F. Mesa, D. R. Jackson, and M. Freire, "High Frequency Leaky-Mode Excitation on a Microstrip Line," *IEEE Trans. Microwave Theory and Techniques*, Vol. 49, No. 12, pp. 2206-2215, Dec. 2001.