

Spring 2016

Prof. David R. Jackson ECE Dept.

Notes 10

Dielectric Rod

This serves as a model for a fiber-optic guide.

Fiber Optic Guides

Two types of fiber-optic guides:

1) Single-mode fiber

This fiber carries a single mode (HE₁₁). This requires the fiber diameter to be on the order of a wavelength. It has less loss, dispersion, and signal distortion. It is often used for long-distances (e.g., greater than 1 km). The diameter is typically 8 μ m. It requires more expensive electro-optic equipment.

2) Multi-mode fiber

This fiber has a diameter that is large relative to a wavelength (e.g., 10 wavelengths). It operates on the principle of total internal reflection (critical-angle effect). It can handle more power than the single-mode fiber, but has more dispersion. The diameter is typically 50 μ m. It is often used for LANs, etc.

Single-mode Fiber

It usually has a yellow jacket.

Multi-mode Fiber

A 1.25 Gbit/s multi-mode fiber

http://en.wikipedia.org/wiki/Multi-mode_fiber

Fiber-optic Cable

Fibers (single-mode or multi-mode) may be bundled together into a "fiber optic cable" that has one or more fibers.

Simplex: single fiber in a cable Duplex: two fibers in a cable

Cable Types: (L to R): Zipcord, Distribution, Loose Tube, Breakout

http://www.thefoa.org/tech/ref/basic/cable.html

Single-mode Fiber: Operation

A single mode (HE_{11} mode) propagates on the dielectric rod. The mode is similar to the TM_0 mode on a grounded slab. It has a zero cutoff frequency.

Multi-mode Fiber: Operation

http://en.wikipedia.org/wiki/Optical_fiber

Single-mode vs. Multi-mode Fibers

Dielectric Rod

Modes are <u>hybrid</u> unless

$$\frac{\partial}{\partial \phi} = 0 \quad (n = 0)$$

For example, assume TM_z : $\Psi = A_z$

$$\begin{split} H_{\rho} &= \frac{1}{\mu \rho} \frac{\partial \psi}{\partial \phi} \\ E_{\phi} &= \frac{1}{j \omega \mu \varepsilon \rho} \frac{\partial \psi}{\partial \phi \partial z} = \frac{-jk_z}{j \omega \mu \varepsilon \rho} \frac{\partial \psi}{\partial \phi} \end{split}$$

At
$$\rho = a$$
:
 $\mu_1 H_{\rho 1} = \mu_0 H_{\rho 0}$
 $E_{\phi 1} = E_{\phi 0}$

$$\frac{\partial \psi_1}{\partial \phi} = \frac{\partial \psi_0}{\partial \phi}$$
$$\frac{1}{\mu_1 \varepsilon_1} \frac{\partial \psi_1}{\partial \phi} = \frac{1}{\mu_0 \varepsilon_0} \frac{\partial \psi_0}{\partial \phi}$$

Hence, for n > 0 we have

$$\mu_1 \mathcal{E}_1 = \mu_0 \mathcal{E}_0$$

(Not true in general!)

Representation of potentials inside the rod:

$$A_{z1} = A J_n (k_{\rho 1} \rho) \sin(n\phi) e^{-jk_z z}$$
$$F_{z1} = B J_n (k_{\rho 1} \rho) \cos(n\phi) e^{-jk_z z}$$

$$\rho < a$$
:

where
$$k_{\rho 1}^{\ 2} = k_1^{\ 2} - k_z^{\ 2}$$
 (*k*_z is unknown)

To see choice of sin/cos, examine the field components (for example E_{ρ}):

$$E_{\rho} = -\frac{1}{\varepsilon \rho} \frac{\partial F_{z}}{\partial \phi} + \frac{-k_{z}}{\omega \mu \varepsilon} \frac{\partial A_{z}}{\partial \rho}$$

The field E_{ρ} is assumed (arbitrarily) to vary as $\sin(n\phi)$ for our choice of potentials.

$$\implies F_z \propto \cos(n\phi) \qquad A_z \propto \sin(n\phi)$$

We then have for the field components:

$$E_{\rho} \propto \sin(n\phi) \qquad E_{\phi} \propto \cos(n\phi) \qquad E_{z} \propto \sin(n\phi) H_{\rho} \propto \cos(n\phi) \qquad H_{\phi} \propto \sin(n\phi) \qquad H_{z} \propto \cos(n\phi)$$

Representation of potentials <u>outside</u> the rod: $\rho > a$:

Use
$$H_n^{(2)}(k_{\rho 0}\rho) = H_n^{(2)}(-j\alpha_{\rho 0}\rho)$$

where

$$k_{\rho 0} = \left(k_0^2 - k_z^2\right)^{1/2} = -j\alpha_{\rho 0}$$
$$\alpha_{\rho 0} = \sqrt{k_z^2 - k_0^2}$$

Note: $\alpha_{\rho 0}$ is interpreted as a <u>positive real number</u> in order to have <u>decay</u> radially in the air region, for a bound (non-leaky) mode.

Useful identity:

$$H_n^{(2)}(-jx) = (-1)^{n+1} H_n^{(1)}(+jx)$$

Another useful identity:

$$K_n(x) \equiv \frac{\pi}{2} j^{n+1} H_n^{(1)}(jx)$$

$K_n(x)$ = Modified Bessel function of the second kind.

Modified Bessel function of the second kind

X

The modified Bessel function of the *first kind* grows exponentially, so we don't want this one.

$$I_n(x) \equiv \left(-i\right)^n J_n(ix)$$

Hence, we choose

$$A_{z0} = CK_n(\alpha_{\rho 0}\rho)\sin(n\phi)e^{-jk_z z}$$
$$F_{z0} = DK_n(\alpha_{\rho 0}\rho)\cos(n\phi)e^{-jk_z z}$$

Summary of potentials:

$$A_{z1} = A J_n (k_{\rho 1} \rho) \sin(n\phi) e^{-jk_z z}$$

$$F_{z1} = B J_n (k_{\rho 1} \rho) \cos(n\phi) e^{-jk_z z}$$

$$A_{z0} = C K_n (\alpha_{\rho 0} \rho) \sin(n\phi) e^{-jk_z z}$$

$$F_{z0} = D K_n (\alpha_{\rho 0} \rho) \cos(n\phi) e^{-jk_z z}$$

Match E_z , H_z , E_ϕ , H_ϕ at $\rho = a$:

$$\begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Example:
$$E_{z1} = E_{z0}$$
 $E_z = \frac{1}{j\omega\mu\varepsilon} \left(\frac{\partial^2}{\partial z^2} + k^2\right) A_z$

$$\frac{1}{j\omega\mu_{1}\varepsilon_{1}}\left(k_{1}^{2}-k_{z}^{2}\right)AJ_{n}\left(k_{\rho 1}a\right)=\frac{1}{j\omega\mu_{0}\varepsilon_{0}}\left(k_{0}^{2}-k_{z}^{2}\right)CK_{n}\left(\alpha_{\rho 0}a\right)$$

SO

$$M_{11} = \frac{1}{j\omega\mu_{1}\varepsilon_{1}} \left(k_{1}^{2} - k_{z}^{2}\right) J_{n}\left(k_{\rho 1}a\right) \qquad M_{13} = \frac{-1}{j\omega\mu_{0}\varepsilon_{0}} \left(k_{0}^{2} - k_{z}^{2}\right) K_{n}\left(\alpha_{\rho 0}a\right) \qquad M_{12} = M_{14} = 0$$

$$\begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \\ M_{41} & M_{42} & M_{43} & M_{44} \end{bmatrix} \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

To have a non-trivial solution, we require that

$$\det\left[M(k_z,\omega)\right]=0$$

$$k_z =$$
 unknown (for a given frequency ω)

Cutoff frequency:

Note: This is an open structure, so cutoff means the boundary between proper and improper behavior $(k_z = k_0)$.

Set
$$k_z = k_0 = \omega_c \sqrt{\mu_0 \varepsilon_0}$$

Then

$$\det\left[M(\omega_c\sqrt{\mu_0\varepsilon_0},\omega_c)\right]=0$$

The unknown is now ω_c .

<u>Dominant mode</u> (lowest cutoff frequency): HE_{11} ($f_c = 0$)

Note: The notation HE means that the mode is hybrid, and has both E_z and H_z , although H_z is stronger. (For an EH mode, E_z would be stronger.)

The <u>field shape</u> is somewhat similar to the TE_{11} circular waveguide mode.

The <u>physical properties</u> of the fields are similar to those of the TM₀ surface wave on a slab (For example, at low frequency the field is loosely bound to the rod.)

When will the next mode be at cutoff? This determines the upper frequency limit for the single-mode fiber.

The next mode (i.e., with the next lowest cutoff frequency) is the TM₀₁ mode.

(Recall: For n = 0, the modes are TM_z and TE_z .)

1

Cutoff:
$$k_z = k_0$$

 $\implies k_\rho = k_{\rho 0} = 0$ (in air region)

$$\begin{split} \psi &= A_z \\ E_{\phi} = \frac{1}{j\omega\mu\varepsilon\rho} \frac{\partial^2 \psi}{\partial\phi\partial z} \\ E_z &= \frac{1}{j\omega\mu\varepsilon} \left(\frac{\partial^2}{\partial z^2} + k^2\right) \psi = \frac{1}{j\omega\mu\varepsilon} k_{\rho}^2 \psi \end{split}$$

The tangential field in the air region at the boundary becomes zero at the cutoff frequency: the rod acts like a circular waveguide with a PEC wall.

TM₀₁ mode at cutoff:
$$k_{\rho 1}a = x_{01} = 2.405$$

$$\implies \sqrt{k_1^2 - k_0^2} a = 2.405$$

or
$$k_0 a \sqrt{n_1^2 - 1} = 2.405$$

Hence, to have only the HE_{11} mode, we have the following frequency restriction:

$$k_0 a < \frac{2.405}{\sqrt{n_1^2 - 1}}$$

 $n_1 = \text{index of refraction of rod}$

Impedance of Wire

A round wire made of conducting material is examined.

Goal: Determine the impedance per unit length (in the z direction).

The wire has a conductivity of σ .

We neglect the z variation of the fields inside the wire. (The wire is short compared with a wavelength.)

Inside the wire:

 $E_z = AJ_0(k\rho)$ (The field must be finite on the *z* axis.)

$$k = \omega \sqrt{\mu \varepsilon_c}$$
$$= \omega \sqrt{\mu \varepsilon} \left(1 - j \frac{\sigma}{\omega \varepsilon} \right)$$
$$\approx \omega \sqrt{\mu \varepsilon} \left(-j \frac{\sigma}{\omega \varepsilon} \right)$$
$$= \sqrt{-j \omega \mu \sigma}$$
$$= \sqrt{\omega \mu \sigma} \left(e^{-j\pi/4} \right)$$
$$= \sqrt{2} \sqrt{\frac{\omega \mu \sigma}{2}} \left(e^{-j\pi/4} \right)$$

a

Z.

 σ

Hence, we have

$$E_{z} = AJ_{0}\left(\sqrt{2}\frac{\rho}{\delta}e^{-j\pi/4}\right)$$

where

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$
 (skin depth)

We can also write the field as

$$E_{z} = AJ_{0}\left(-\sqrt{2}\frac{\rho}{\delta}e^{j3\pi/4}\right) = AJ_{0}\left(\sqrt{2}\frac{\rho}{\delta}e^{j3\pi/4}\right)$$

$$E_{z} = A J_{0} \left(\sqrt{2} \frac{\rho}{\delta} e^{j 3\pi/4} \right)$$

Definition of Kelvin functions:

$$Ber_{\nu}(x) \equiv Re(J_{\nu}(xe^{j3\pi/4}))$$
$$Bei_{\nu}(x) \equiv Im(J_{\nu}(xe^{j3\pi/4}))$$

Therefore, we can write

$$E_{z} = A \left(\operatorname{Ber}_{0} \left(\sqrt{2} \frac{\rho}{\delta} \right) + j \operatorname{Bei}_{0} \left(\sqrt{2} \frac{\rho}{\delta} \right) \right)$$

The current flowing in the wire is

Hence
$$I = 2\pi\sigma A \int_{0}^{a} J_{0} \left(\sqrt{2} \frac{\rho}{\delta} e^{j3\pi/4} \right) \rho d\rho$$

The internal impedance per unit length is defined as:

$$Z_l = \frac{E_z(a)}{I}$$

Hence,

$$Z_{l} = \frac{AJ_{0}\left(\sqrt{2}\frac{a}{\delta}e^{j3\pi/4}\right)}{2\pi\sigma A\int_{0}^{a}J_{0}\left(\sqrt{2}\frac{\rho}{\delta}e^{j3\pi/4}\right)\rho d\rho}$$

Note: The <u>internal</u> impedance accounts for the internal stored energy and power dissipation.

We also have the following helpful integration identity:

$$\int J_0(x) x dx = x J_1(x)$$

Hence

$$\int_{0}^{a} J_{0}\left(\sqrt{2}\frac{\rho}{\delta}e^{j3\pi/4}\right)\rho d\rho = \left(\frac{\delta}{\sqrt{2}}e^{-j3\pi/4}\right)^{2}\int_{0}^{L} J_{0}(x)xdx$$

$$= xJ_{1}(x)\Big|_{0}^{L} \qquad \text{Use:}$$

$$= LJ_{1}(L) \qquad x = \sqrt{2}\frac{\rho}{\delta}e^{j3\pi/4}$$
where $L \equiv \sqrt{2}\frac{a}{\delta}e^{j3\pi/4} \qquad dx = d\rho\left(\frac{\sqrt{2}}{\delta}\right)e^{j3\pi/4}$

Hence, we have

$$Z_{l} = \frac{J_{0}\left(\sqrt{2}\frac{a}{\delta}e^{j3\pi/4}\right)}{2\pi\sigma\left(\frac{\delta}{\sqrt{2}}e^{-j3\pi/4}\right)^{2}\left(\sqrt{2}\frac{a}{\delta}e^{j3\pi/4}\right)J_{1}\left(\sqrt{2}\frac{a}{\delta}e^{j3\pi/4}\right)}$$

where

$$J_{0}\left(\frac{a}{\delta}e^{j3\pi/4}\right) = \operatorname{Ber}_{0}\left(\frac{a}{\delta}\right) + j\operatorname{Bei}_{0}\left(\frac{a}{\delta}\right)$$
$$J_{1}\left(\frac{a}{\delta}e^{j3\pi/4}\right) = \operatorname{Ber}_{1}\left(\frac{a}{\delta}\right) + j\operatorname{Bei}_{1}\left(\frac{a}{\delta}\right)$$

$$e^{j3\pi/4}$$

At low frequency ($a \ll \delta$):

$$Z_l \approx \frac{1}{\sigma(\pi a^2)} + j\omega\left(\frac{\mu_0\mu_r}{8\pi}\right)$$

At high frequency ($a >> \delta$):

$$Z_l \approx \frac{Z_s}{2\pi a}$$

where

$$Z_{s} = R_{s} \left(1 + j\right)$$
$$R_{s} = \frac{1}{\sigma\delta} = \sqrt{\frac{\omega\mu}{2\sigma}} \quad \text{(surface resistance of metal)}$$

Transmission Line Model

An extra impedance per unit length Z_i is added to the TL model in order to account for the internal impedance of the conductors.

Note: The form of Z_i will depend on the shape of the conductors: we have only analyzed the case of a round wire.

The <u>external</u> inductance per unit length L_0 is calculated assuming perfectly conducting wires.

Transmission Line Model

For a twin lead (two wires running parallel) we have:

$$Z_i \approx 2Z_l$$

We assume that the wires are far enough apart so that the current is <u>uniform</u> inside each one.

