

Spring 2016

Prof. David R. Jackson ECE Dept.

Notes 12

Tube of Surface Current

From superposition, we know we can solve the problem using

$$\underline{A} = \underline{\hat{z}} \psi \quad (\mathsf{TM}_z)$$

Represent $J_{sz}(\phi)$ as a (complex exponential) Fourier series:

$$J_{sz}(\phi) = \sum_{n=-\infty}^{+\infty} c_n e^{jn\phi}$$

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} J_{sz}(\phi) e^{-jn\phi} d\phi$$

The coefficients c_n are assumed to be known.

$$\rho < a$$
 $\Psi_1 = \sum_{n=-\infty}^{+\infty} a_n e^{jn\phi} J_n(k\rho)$

$$\rho > a$$
 $\Psi_2 = \sum_{n=-\infty}^{+\infty} b_n e^{jn\phi} H_n^{(2)}(k\rho)$

Apply B.C.'s (at $\rho = a$): $E_{z1} = E_{z2}$ $H_{\phi 2} - H_{\phi 1} = J_{sz}(\phi)$

The first B.C. gives

$$\psi_1 = \psi_2$$

The second B.C. gives $TM_{z} \text{ Table : } H_{\phi} = -\frac{1}{\mu} \left(\frac{\partial \psi}{\partial \rho} \right)$ $-\frac{1}{\mu} \left(\frac{\partial \psi_{2}}{\partial \rho} - \frac{\partial \psi_{1}}{\partial \rho} \right) = J_{sz}(\phi)$

Hence we have, from the first BC,

$$a_n J_n(ka) = b_n H_n^{(2)}(ka)$$

From the second BC we have

$$-\frac{1}{\mu}k\left[b_nH_n^{(2)'}(ka)-a_nJ_n'(ka)\right]=c_n$$

Substituting for a_n from the first equation, we have

$$b_{n}\left[H_{n}^{(2)}'(ka) - \left(\frac{H_{n}^{(n)}(ka)}{J_{n}(ka)}\right)J_{n}'(ka)\right] = -\frac{\mu}{k}c_{n}$$

$$b_{n}\left[J_{n}(ka)H_{n}^{(2)}'(ka) - J_{n}'(ka)H_{n}^{(2)}(ka)\right] = -\frac{\mu}{k}c_{n}J_{n}(ka)$$

Next, look at the term

$$\left[\right] = J_n(ka) H_n^{(2)'}(ka) - J_n'(ka) H_n^{(2)}(ka)$$

This may be written as (using x = ka)

$$\begin{bmatrix} \end{bmatrix} = J_n(x) \begin{bmatrix} J'_n(x) - jY'_n(x) \end{bmatrix} - J'_n(x) \begin{bmatrix} J_n(x) - jY_n(x) \end{bmatrix}$$
$$= -j \begin{bmatrix} J_n(x)Y'_n(x) - J'_n(x)Y_n(x) \end{bmatrix}$$
$$= -j \begin{bmatrix} \frac{2}{\pi x} \end{bmatrix}$$
 (This follows from the Wronskian identity below.)
$$J_n(x)Y'_n(x) - J'_n(x)Y_n(x) = \frac{2}{\pi x}$$

Hence,
$$b_n \left[\frac{-2j}{\pi ka} \right] = -\frac{\mu}{k} c_n J_n(ka)$$

 πx

The coefficient is then

$$b_n = -j\mu\pi\left(\frac{a}{2}\right)c_nJ_n(ka)$$

Using

$$a_n J_n(ka) = b_n H_n^{(2)}(ka)$$

we have

$$a_n = -j\mu\pi\left(\frac{a}{2}\right)c_nH_n^{(2)}(ka)$$

Generalization: a phased tube of current

$$J_{sz}(\phi) = e^{-jk_z z} \sum_{n=-\infty}^{+\infty} c_n e^{jn\phi}$$

$$\rho < a \qquad \psi_1 = e^{-jk_z z} \sum_{n=-\infty}^{+\infty} a_n e^{jn\phi} J_n(k_\rho \rho)$$

$$\rho > a$$
 $\Psi_2 = e^{-jk_z z} \sum_{n=-\infty}^{+\infty} b_n e^{jn\phi} H_n^{(2)}(k_\rho \rho)$

$$a_n = -j\mu\pi\left(\frac{a}{2}\right)c_n H_n^{(2)}(k_\rho a)$$

$$b_n = -j\mu\pi\left(\frac{a}{2}\right)c_nJ_n(k_\rho a)$$

Inductive Post

Parallel-plate waveguide

Equivalence principle: remove coax aperture and probe metal

The magnetic-current frill is ignored in calculating the fields.

The probe problem is thus equivalent to an infinite tube of current in free space.

For
$$\rho \ge a$$
: $A_z = \psi_2 = \sum_{n=-\infty}^{\infty} b_n e^{jn\phi} H_n^{(2)}(k\rho)$
 $E_{\rho} = \frac{1}{j\omega\mu\varepsilon} \frac{\partial^2 \psi}{\partial\rho\partial z}$
 $E_{\phi} = \frac{1}{j\omega\mu\varepsilon\rho} \frac{\partial^2 \psi}{\partial\rho\partial z}$
where $b_n = -j\mu\pi \left(\frac{a}{2}\right) c_n J_n(ka)$
 $E_z = \frac{1}{j\omega\mu\varepsilon} \left(\frac{\partial^2}{\partial z^2} + k^2\right)$

 $\left(\frac{\partial^2}{\partial z^2} + k^2\right)\psi$

and

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} J_{sz}(\phi) e^{-jn\phi} d\phi$$
$$= \frac{1}{2\pi} \left(\frac{I_{0}}{2\pi a} \right)_{-\pi}^{+\pi} e^{-jn\phi} d\phi$$
$$= \begin{cases} \frac{I_{0}}{2\pi a}, & n = 0\\ 0, & n \neq 0 \end{cases}$$

Hence

$$A_{z} = b_{0} H_{0}^{(2)}(k\rho)$$

$$b_0 = -j\mu\pi \left(\frac{a}{2}\right)c_0 J_0(ka)$$
$$c_0 = \frac{I_0}{2\pi a}$$

We then have

$$A_{z} = \left[-j\mu\pi\left(\frac{a}{2}\right)\left(\frac{I_{0}}{2\pi a}\right)J_{0}\left(ka\right)\right]H_{0}^{(2)}(k\rho)$$

$$E_{z} = \frac{1}{j\omega\mu\varepsilon} \left(k^{2} + \frac{\partial^{2}}{\partial z^{2}} \right) A_{z} = -j\omega A_{z}$$

SO

$$E_z = -\omega\mu \left(\frac{I_0}{4}\right) J_0(ka) H_0^{(2)}(k\rho)$$

Complex source power radiated by tube of current (height *h*):

$$P_{s} = -\frac{1}{2} \int_{s} \underline{E} \cdot \underline{J}_{s}^{*} dS$$
$$= -\frac{1}{2} (2\pi a) h J_{sz}^{*} E_{z} \Big|_{\rho=a}$$

or

$$P_{s} = -\frac{1}{2}(2\pi a)h\left(\frac{I_{0}^{*}}{2\pi a}\right)E_{z}\Big|_{\rho=a}$$
$$= -\frac{1}{2}(2\pi a)h\left(\frac{I_{0}^{*}}{2\pi a}\right)\left[-\omega\mu\left(\frac{I_{0}}{4}\right)J_{0}(ka)H_{0}^{(2)}(ka)\right]$$

or

$$P_{s} = \left(\frac{h}{8}\right) \left(\omega\mu\right) \left|I_{0}\right|^{2} J_{0}(ka)H_{0}^{(2)}(ka)$$

or

$$P_{s} = \frac{(kh)}{8} (\eta) |I_{0}|^{2} J_{0}(ka) H_{0}^{(2)}(ka)$$

where

$$k = k_0 \sqrt{\varepsilon_r \mu_r} \qquad \eta = \eta_0 \sqrt{\frac{\mu_r}{\varepsilon_r}}$$

Equivalent circuit seen by coax:

SO

$$Z_{in} = \frac{2P_s}{\left|I_0\right|^2}$$

Therefore

$$Z_{in} = \eta \frac{(kh)}{4} J_0(ka) H_0^{(2)}(ka)$$

For $ka \ll 1$

$$Z_{in} \approx \eta \frac{(kh)}{4} \left[1 - j \frac{2}{\pi} \left(\gamma + \ln\left(\frac{ka}{2}\right) \right) \right]$$
$$\gamma = 0.5772156$$

We thus have the "probe reactance": $X_p = \text{Im}(Z_{in})$

$$X_{p} \approx \eta \frac{(kh)}{4} \left(\frac{2}{\pi}\right) \left(-\gamma - \ln\left(\frac{ka}{2}\right)\right)$$

or

$$X_p \approx \frac{\eta}{2\pi} (kh) \left(-\gamma + \ln\left(\frac{2}{ka}\right) \right)$$

 $\gamma = 0.5772156$

Probe inductance:

$$L_{p} = \frac{X_{p}}{\omega} = \left(\frac{1}{\omega}\right) \frac{\eta}{2\pi} (kh) \left(-\gamma + \ln\left(\frac{2}{ka}\right)\right)$$

Summary

Probe reactance:

$$X_{p} \approx \mu_{r} \frac{\eta_{0}}{2\pi} (k_{0}h) \left(-\gamma + \ln\left(\frac{2}{k_{0}a\sqrt{\varepsilon_{r}\mu_{r}}}\right) \right)$$

Probe inductance:

$$L_p \approx \mu_0 \mu_r \frac{h}{2\pi} \left(-\gamma + \ln\left(\frac{2}{k_0 a \sqrt{\varepsilon_r \mu_r}}\right) \right)$$

Comments:

- The probe inductance increases as the length of the probe increases.
- The probe inductance increases as the radius of the probe decreases.
- The probe inductance is usually positive since there is a net stored magnetic energy in the vicinity of the probe.
- This problem provides a good approximation for the probe reactance of a microstrip antenna (as long as *kh* << 1).

Practical patch antenna case:

$$\varepsilon_r = 2.94$$

 $h = 0.1524 \text{ [cm]} (60 \text{ mils})$
 $a = 0.0635 \text{ [cm]} (50[\Omega] \text{ SMA Connector})$
 $f = 2.0 \text{ [GHz]} (\lambda_0 = 14.9896 \text{ [cm]})$

$$X_p = 12.3 \ [\Omega]$$

$$L_p = 0.979 \text{ [nH]}$$

Microstrip Antenna Model

$$Z_{in} = jX_p + Z_{RLC}$$

f_0 = resonance frequency of RLC circuit

The frequency where *R* is maximum is different from the frequency where the reactance is zero, due to the probe reactance.

Lossy Post

If the post has loss (finite conductivity), then we need to account for the skin effect, which accounts for the magnetic energy stored <u>inside</u> the post. This gives us an <u>internal</u> reactance.

$$X_p^{ext} \approx \mu_r \frac{\eta_0}{2\pi} (k_0 h) \left(-\gamma + \ln\left(\frac{2}{k_0 a \sqrt{\varepsilon_r \mu_r}}\right) \right)$$

$$X_p^{int} = X_s \left(\frac{h}{2\pi a}\right)$$

$$X_{s} = R_{s} = \frac{1}{\sigma\delta} = \sqrt{\frac{\omega\mu}{2\sigma}}$$

Example (Revisited)

Practical patch antenna case:

$$\varepsilon_r = 2.94$$

 $h = 0.1524 \text{ [cm]}$ (60 mils)
 $a = 0.0635 \text{ [cm]}$ (50[Ω] SMA Connector)
 $f = 2.0 \text{ [GHz]}$ ($\lambda_0 = 14.9896 \text{ [cm]}$)

Assume:
$$\sigma = 3.0 \times 10^7 \text{ [S/m]}$$

$$X_{p}^{ext} = 12.3 \ [\Omega]$$

$$X_{p}^{int} = 0.0062$$
 [Ω]

Accuracy of Probe Formula

 $\varepsilon_r = 2.2$ $f = 2.0 \quad [GHz]$ $a = 0.635 \quad [mm] \quad (SMA \text{ connector})$ $b = 2.188 \quad [mm] \quad (50 \quad [\Omega] \text{ coax})$

H. Xu, D. R. Jackson, and J. T. Williams, "Comparison of Models for the Probe Inductance for a Parallel Plate Waveguide and a Microstrip Patch," *IEEE Trans. Antennas and Propagation*, vol. 53, pp. 3229-3235, Oct. 2005.