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The goal is to represent a plane wave in cylindrical coordinates as a
series of cylindrical waves (to help us do scattering problems).
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Generating function: (Schaum’s Outline Eq. (24.16))
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Generalization:
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Let
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N=-—00 Note: The plane-wave field on
the LHS is finite on the z axis.

Multiple by e1M%and integrate over ¢ < [0, 27]
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Note: It is not obvious, but a, should be a constant (not a function of p).



ldentity (adapted from Schaum’s Mathematical Handbook Eq. (24.99)):
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Scattering by Cylinder

A TM, plane wave is incident on a PEC cylinder.
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To find Aq:
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The incident potential is

A= A g i)
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For p =2 a denote

A=A+

» The incident potential is that which exists assuming that the cylinder
IS not there.

» The scattered potential is that produced by the currents on the
cylinder, which radiate.
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According to the equivalence principle,

we can remove the metal cylinder and
keep the surface currents.
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To solve for A’ , first put A; Into cylindrical form (Jacobi-Anger identity):
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where k, =/k?—k? = Jk? —k?sin?¢, =kcosd, =k,

Assume the following form for the scattered field:
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Both will be satisfied if

A (a,¢,2)=0
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Hence
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Note:

We were successful in solving the scattering problem using only a
TM, scattered field. This is because the cylinder was perfectly
conducting. For a dielectric cylinder, the scattered field must have
BOTH A, and F, (unless the incident plane wave has k, = 0).
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The total field near a conducting cylinder is shown (normal incidence).
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http://www.mathworks.com/matlabcentral/fileexchange/30162-cylinder-scattering
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