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Plane Wave Expansion 
The goal is to represent a plane wave in cylindrical coordinates as a  
series of cylindrical waves (to help us do scattering problems). 

Generating function: (Schaum’s Outline Eq. (24.16)) 
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Plane Wave Expansion (cont.) 
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Hence, the generating function identity gives us 
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Plane Wave Expansion (cont.) 

Generalization: 

where 
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Alternative Derivation 

Multiple by e-jmφ and integrate over φ  ∈ [0, 2π]  

Note that 
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Note: The plane-wave field on 
the LHS is finite on the z axis. 



Alternative Derivation 
2
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Note: It is not obvious, but am should be a constant (not a function of ρ). 



Alternative Derivation (cont.) 

Hence 

or 

Identity (adapted from Schaum’s Mathematical Handbook Eq. (24.99)): 
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We then have 



Scattering by Cylinder 
A TMz plane wave is incident on a PEC cylinder. 

iH

iE

θi   

( )
0ˆ x zi j k x k z

yH y H e− +=
cos
sin

x i

z i

k k
k k

θ
θ

=
=

TMz 

8 

k

x  

z  

a 

Assume ky = 0 
(rotate the coordinates if necessary) 



Scattering by Cylinder (cont.) 
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Scattering by Cylinder (cont.)  
Hence 
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Scattering by Cylinder (cont.)  
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 The incident potential is that which exists assuming that the cylinder 
is not there. 

 The scattered potential is that produced by the currents on the 
cylinder, which radiate. 
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Scattering by Cylinder (cont.)  
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According to the equivalence principle, 
we can remove the metal cylinder and 
keep the surface currents. 



Scattering by Cylinder (cont.) 

where 

To solve for       , first put        into cylindrical form (Jacobi-Anger identity): s
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Assume the following form for the scattered field: 
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Scattering by Cylinder (cont.) 

At 

Both will be satisfied if 
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Scattering by Cylinder (cont.) 
Hence 

This yields 
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Scattering by Cylinder (cont.) 

Note:  
We were successful in solving the scattering problem using only a 

TMz scattered field. This is because the cylinder was perfectly 
conducting. For a dielectric cylinder, the scattered field must have 

BOTH Az and Fz (unless the incident plane wave has kz = 0). 
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High-Frequency Scattering by Cylinder (cont.) 
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The total field near a conducting cylinder is shown (normal incidence). 

Incident wave 

http://www.mathworks.com/matlabcentral/fileexchange/30162-cylinder-scattering 

z zE j Aω= −
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