ECE 6341

Spring 2016

Prof. David R. Jackson ECE Dept.

Notes 13

Plane Wave Expansion

The goal is to represent a plane wave in cylindrical coordinates as a series of cylindrical waves (to help us do scattering problems).

$$
\begin{gathered}
\underline{E}=\underline{E}_{0} \psi(x) \\
\psi=e^{-j k x} \\
x=\rho \cos \phi
\end{gathered}
$$

Generating function: (Schaum's Outline Eq. (24.16))

$$
e^{\frac{\alpha}{2}\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{+\infty} J_{n}(\alpha) t^{n}
$$

Plane Wave Expansion (cont.)

$$
\begin{gathered}
\text { Let }\left\{\begin{array}{l}
\alpha=k \rho \\
t=-j e^{j \phi}
\end{array}\right. \\
t-\frac{1}{t}=-j e^{j \phi}-\frac{1}{-j e^{j \phi}}=-j e^{j \phi}-j e^{-j \phi}=-2 j \cos \phi
\end{gathered}
$$

Hence, the generating function identity gives us
$e^{\frac{\alpha}{2}\left(t-\frac{1}{t}\right)}=e^{\left(\frac{k \rho}{2}\right)(-2 j \cos \phi)}=e^{-j(k \rho) \cos \phi}=e^{-j k x}=\sum_{n=-\infty}^{+\infty} J_{n}(k \rho)(-j)^{n} e^{j n \phi}$

Plane Wave Expansion (cont.)

or

$$
e^{-j / k}=\sum_{n=-\infty}^{+\infty} \frac{1}{j^{n}} J_{n}(k \rho) e^{j n \phi}
$$

"Jacobi-Anger Expansion"

Generalization:

$$
e^{-j k_{x} x} e^{-j k_{z} z}=e^{-j k_{z} z} \sum_{n=-\infty}^{+\infty} \frac{1}{j^{n}} J_{n}\left(k_{\rho} \rho\right) e^{j n \phi}
$$

where

$$
k_{\rho}=k_{x}=\left(k^{2}-k_{z}^{2}\right)^{1 / 2}
$$

Alternative Derivation

Let

$$
e^{-j k x}=\sum_{n=-\infty}^{+\infty} a_{n} J_{n}(k \rho) e^{j n \phi}
$$

Note: The plane-wave field on the LHS is finite on the z axis.

Multiple by $e^{-j m \phi}$ and integrate over $\phi \in[0,2 \pi]$

Note that $\quad \int_{0}^{2 \pi} e^{-j m \phi} e^{j n \phi} d \phi= \begin{cases}2 \pi, & m=n \\ 0, & m \neq n\end{cases}$

Hence $\int_{0}^{2 \pi} e^{-j k x} e^{-j m \phi} d \phi=2 \pi a_{m} J_{m}(k \rho)$

Alternative Derivation

$$
\int_{0}^{2 \pi} e^{-j k x} e^{-j m \phi} d \phi=2 \pi a_{m} J_{m}(k \rho)
$$

Hence

$$
a_{m}=\frac{1}{2 \pi J_{m}(k \rho)} \int_{0}^{2 \pi} e^{-j k x} e^{-j m \phi} d \phi
$$

$$
\text { or } \quad a_{m}=\frac{1}{2 \pi J_{m}(k \rho)} \int_{0}^{2 \pi} e^{-j k \rho \cos \phi} e^{-j m \phi} d \phi
$$

Note: It is not obvious, but a_{m} should be a constant (not a function of ρ).

Alternative Derivation (cont.)

Identity (adapted from Schaum's Mathematical Handbook Eq. (24.99)):

$$
\int_{0}^{2 \pi} e^{-j(x \cos \phi+m \phi)} d \phi=\frac{2 \pi}{j^{m}} J_{m}(x)
$$

Hence

$$
a_{m}=\frac{1}{2 \pi J_{m}(k \rho)}\left(\frac{2 \pi}{j^{m}} J_{m}(k \rho)\right)
$$

or

$$
a_{m}=\frac{1}{j^{m}}
$$

We then have

$$
e^{-j k x}=\sum_{n=-\infty}^{+\infty} \frac{1}{j^{m}} J_{n}(k \rho) e^{j n \phi}
$$

Scattering by Cylinder

$\mathrm{A} \mathrm{TM}_{z}$ plane wave is incident on a PEC cylinder.

$$
\underline{H}^{i}=\underline{\hat{y}} H_{y 0} e^{-j\left(k_{x} x+k_{z} z\right)}
$$

$$
\begin{aligned}
& k_{x}=k \cos \theta_{i} \\
& k_{z}=k \sin \theta_{i}
\end{aligned}
$$

Scattering by Cylinder (cont.)

Let

$$
A_{z}^{i}=A_{1} e^{-j\left(k_{x} x+k_{z} z\right)}
$$

To find A_{1} :

$$
\begin{aligned}
H_{y}^{i} & =-\frac{1}{\mu} \frac{\partial A_{z}^{i}}{\partial x} \\
& =-\frac{1}{\mu}\left(-j k_{x}\right) A_{1} e^{-j\left(k_{x} x+k_{z} z\right)}
\end{aligned}
$$

Scattering by Cylinder (cont.)

Hence

$$
H_{y 0}=\frac{j}{\mu} k_{x} A_{1}
$$

or

$$
A_{1}=-j \mu\left(\frac{1}{k_{x}}\right) H_{y 0}
$$

The incident potential is

$$
A_{z}^{i}=A_{1} e^{-j\left(k_{x} x+k_{z} z\right)}
$$

Scattering by Cylinder (cont.)

For $\rho \geq a$ denote

$$
A_{z}=A_{z}^{i}+A_{z}^{s}
$$

- The incident potential is that which exists assuming that the cylinder is not there.
- The scattered potential is that produced by the currents on the cylinder, which radiate.

Scattering by Cylinder (cont.)

$$
\underline{H}^{i}=\underline{\hat{y}} H_{y 0} e^{-j\left(k_{x} x+k_{z} z\right)}
$$

According to the equivalence principle, we can remove the metal cylinder and keep the surface currents.

Scattering by Cylinder (cont.)

To solve for A_{z}^{s}, first put A_{z}^{i} into cylindrical form (Jacobi-Anger identity):

$$
A_{z}^{i}=A_{1} e^{-j k_{z} z} \sum_{n=-\infty}^{+\infty} \frac{1}{j^{n}} J_{n}\left(k_{\rho} \rho\right) e^{j n \phi}
$$

$$
\text { where } k_{\rho}=\sqrt{k^{2}-k_{z}^{2}}=\sqrt{k^{2}-k^{2} \sin ^{2} \theta_{i}}=k \cos \theta_{i}=k_{x}
$$

Assume the following form for the scattered field:

$$
A_{z}^{s}=A_{1} e^{-j k_{z} z} \sum_{n=-\infty}^{+\infty} a_{n}\left(\frac{1}{j^{n}}\right) H_{n}^{(2)}\left(k_{\rho} \rho\right) e^{j n \phi}
$$

Scattering by Cylinder (cont.)

$$
\text { At } \begin{aligned}
\rho= & =a \quad\left\{\begin{array}{l}
E_{Z}=0 \\
E_{\phi}=0
\end{array}\right. \\
E_{z} & =\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2} A_{z}}{\partial z^{2}}+k^{2} A_{z}\right) \\
E_{\phi} & =\frac{1}{j \omega \mu \varepsilon} \frac{1}{\rho} \frac{\partial^{2} A_{z}}{\partial \phi \partial z}
\end{aligned}
$$

Both will be satisfied if

$$
A_{z}(a, \phi, z)=0
$$

Scattering by Cylinder (cont.)

Hence

$$
A_{z}^{s}(a, \phi, z)=-A_{z}^{i}(a, \phi, z)
$$

This yields

$$
J_{n}\left(k_{\rho} a\right)=-a_{n} H_{n}^{(2)}\left(k_{\rho} a\right)
$$

or

$$
a_{n}=-\frac{J_{n}\left(k_{\rho} a\right)}{H_{n}^{(2)}\left(k_{\rho} a\right)}
$$

We then have

$$
A_{z}^{s}=e^{-j k_{z} z} A_{n=-\infty}^{+\infty}\left(\frac{1}{j^{n}}\right)\left(\frac{-J_{n}\left(k_{\rho} a\right)}{H_{n}^{(2)}\left(k_{\rho} a\right)}\right) H_{n}^{(2)}\left(k_{\rho} \rho\right) e^{j n \phi}
$$

Scattering by Cylinder (cont.)

Note:

We were successful in solving the scattering problem using only a TM_{z} scattered field. This is because the cylinder was perfectly conducting. For a dielectric cylinder, the scattered field must have BOTH A_{z} and F_{z} (unless the incident plane wave has $k_{z}=0$).

High-Frequency Scattering by Cylinder (cont.)

The total field near a conducting cylinder is shown (normal incidence).

http://www.mathworks.com/matlabcentral/fileexchange/30162-cylinder-scattering

