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Radiation Physics in Layered Media 
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Line source on grounded substrate 



Reflection Coefficient 
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Poles 

Poles: 
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If a slight loss is added, the SW poles are shifted 
off the real axis as shown. 

Poles (cont.) 
Complex kx plane 
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Poles (cont.) 
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Review of Branch Cuts 
and Branch Points 

In the next few slides we review the basic concepts of 
branch points and branch cuts. 
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Consider ( ) 1/ 2f z z= jz x jy r e θ= + =

( )1/21/2 /2j jz r e r eθ θ= =

1z = 0 :θ = 1/2 1z =

2 :θ π= 1/2 1z = −

4 :θ π= 1/2 1z =

There are two possible values. 

Choose 

Branch Cuts and Points (cont.) 
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The concept is illustrated for  ( ) 1/ 2f z z= jz r e θ=

1/ 2 / 2jz r e θ=

x

y

A
B C

r = 1 

Consider what happens if we 
encircle the origin: 

Branch Cuts and Points (cont.) 
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Branch Cuts and Points (cont.) 

1/ 2 / 2jz r e θ=
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We don’t get back the same result! 
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Now consider encircling 
the origin twice:  

1/ 2 / 2jz r e θ=
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D        3    -
E        4    1
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point

We now get back the same result! 

Hence the square-root function is a 
double-valued function. 

Branch Cuts and Points (cont.) 
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In order to make the square-root function single-valued, we 
must put a “barrier” or “branch cut”. 

The origin is called a branch point: we are not allowed to encircle it if 
we wish to make the square-root function single-valued. 

x

Branch cut 

y

Here the branch cut was chosen to lie on the negative real axis (an arbitrary choice). 

Branch Cuts and Points (cont.) 
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We must now choose what “branch” of the function we want. 

jz r e θ= 1/ 2 / 2jz r e θ=

π θ π− < <

Branch Cuts and Points (cont.) 

This is the "principle" branch, denoted by        .      z
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Here is the other choice of branch. 

jz r e θ= 1/ 2 / 2jz r e θ=

3π θ π< <

x

Branch cut 

y

1z =
1/ 2 1z = −

Branch Cuts and Points (cont.) 
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Note that the function is discontinuous across the branch cut. 

jz r e θ= 1/ 2 / 2jz r e θ=

π θ π− < <
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Branch cut 
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1,z θ π −= − =

1,z θ π −= − = −

1/ 2z j=

1/ 2z j= −

Branch Cuts and Points (cont.) 
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The shape of the branch cut is arbitrary. 

jz r e θ=
1/ 2 / 2jz r e θ=

/ 2 3 / 2π θ π− < <
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1z =
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Branch Cuts and Points (cont.) 
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The branch cut does not have to be a straight line. 

jz r e θ=
1/ 2 / 2jz r e θ=

In this case the branch is determined by requiring that the square-
root function (and hence the angle θ ) change continuously as we 
start from a specified value (e.g., z = 1). 

x

Branch cut 
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1/ 2z j=
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( )1/ 2 / 4 1 / 2jz e jπ= = +

z j= −

( )1/ 2 / 4 1 / 2jz e jπ−= = −

Branch Cuts and Points (cont.) 
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Consider this function: 

( )1/ 22( ) 1f z z= −

Branch Cuts and Points (cont.) 

What do the branch points and branch cuts look like for this function? 

(similar to our wavenumber function) 
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( ) ( ) ( ) ( ) ( )( )1/ 2 1/ 21/ 2 1/ 2 1/ 22( ) 1 1 1 1 1f z z z z z z= − = − + = − − −

Branch Cuts and Points (cont.) 
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There are two branch cuts: we are not allowed to encircle either branch point. 
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( ) ( )( )1/ 21/ 2 1/ 2 1/ 2
1 2( ) 1 1f z z z w w= − − − =

Branch Cuts and Points (cont.) 
Geometric interpretation 
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The function f (z) is unique once we specify 
its value at any point. (The function must 
change continuously away from this point.) 
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Riemann Surface 
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Georg Friedrich Bernhard 
Riemann (September 17, 1826 – 
July 20, 1866) was an influential 
German mathematician who made 
lasting contributions to analysis 
and differential geometry, some of 
them enabling the later 
development of general relativity.  

The function z1/2 is continuous 
everywhere on this surface (there are 
no branch cuts). It also assumes all 
possible values on the surface.  

The Riemann surface is a set of multiple 
complex planes connected together. 

The function z1/2 has a surface with 
two sheets. 

http://en.wikipedia.org/wiki/File:Georg_Friedrich_Bernhard_Riemann.jpeg


Riemann Surface 

The concept of the Riemann surface is illustrated for 

( ) 1/ 2f z z=

( 1 1)

3 ( 1 1)

π θ π

π θ π

− < < =

< < = −

Top sheet: 

Bottom sheet: 

Consider this choice: 

jz r e θ=

22 

For a single complex plane, this would correspond to a branch cut on the negative real axis. 



Riemann Surface (cont.) 
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Riemann Surface (cont.) 

24 

Bottom  sheet 

Top sheet 

Branch cut 

(where it used to be)  

Branch point (where it used to be)  
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Riemann Surface (cont.) 
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Branch Cuts in Radiation Problem 

Now we return to the problem (line source over grounded slab): 
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Note: There are no branch points from ky1:  
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(The integrand is an even function of ky1.) 



Branch Cuts 

( ) ( ) ( )

( ) ( )

1/2 1/2 1/22 2
0 0 0 0

1/2 1/2
0 0

y x x x

x x

k k k k k k k

j k k k k

= − = + −

= − − +

Branch points appear at   0xk k= ±

No branch cuts appear at  1xk k= ± (The integrand is an even function of ky1.) 

Note: It is arbitrary that we have factored out a –j instead of a +j, since 
we have not yet determined the meaning of the square roots yet. 
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Branch Cuts (cont.) 

( ) ( )1/2 1/2
0 0 0y x xk j k k k k= − − +

C
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xik

0k−
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1k1k−

Branch cuts are lines we are not allowed to cross. 
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For 0
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This choice then uniquely defines ky0 
everywhere in the complex plane. 
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Branch Cuts (cont.) 







at this point 
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Riemann Surface 

( )1/22 2
0 0y xk k k= −

There are two sheets, joined at the blue lines. 

xik

xrk
0k−

0k

Top sheet 

Bottom sheet 

0 0y yk j k= −

0 0y yk j k= +
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The path of integration is on the top sheet. 



Proper / Improper Regions 
Let 

“Proper” region: 

0 0 0

x xr xik k jk

k k jk
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>
y

y

k
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Boundary: 0Im 0yk =

2 2 2
0 0 0= real real > 0y y xk k k k⇒ = − =

The goal is to figure out which 
regions of the complex plane 
are "proper" and "improper." 
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Proper / Improper Regions (cont.) 

Hence 

One point on curve: 
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Proper / Improper Regions (cont.) 

Also 2 2 2 2
0 0 0xr xik k k k′ ′′− − + >

xik

0k

0−k
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The solid curves 
satisfy this condition. 
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Complex plane: top sheet 

xik

0k

0−k

xrk

Improper region 

Proper 

On the complex plane corresponding to the bottom sheet, the proper and 
improper regions are reversed from what is shown here. 

Proper / Improper Regions (cont.) 
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Sommerfeld Branch Cuts 

Complex plane corresponding to top sheet: proper everywhere 

Complex plane corresponding to bottom sheet: improper everywhere 

xik
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0−k

xrk

Hyperbola 
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Sommerfeld Branch Cuts 

Note: We can think of a two complex planes with branch cuts, or a Riemann surface 
with  hyperbolic-shaped  “ramps” connecting the two sheets.  

xik
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0−k

xrk

Riemann surface 

xik

0k

0−k

xrk

Complex plane 

The Riemann surface allows us to show all possible poles, both proper 
(surface-wave) and improper (leaky-wave). 

37 



Sommerfeld Branch Cut 

Let 

xik

0k

0−k
xrk

0 0k ′′ →

The branch cuts now lie along the imaginary axis, and part of the real axis. 
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Path of Integration 
xik

0k

0−k
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1−k C

The path is on the complex plane corresponding to the top Riemann sheet. 
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Numerical Path of Integration 
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Leaky-Mode Poles 

(improper) 
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0Im 0

LW LW
in x x
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Z k Z k
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Note: TM0 never 
becomes improper. 

Frequency behavior on the Riemann surface 
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Riemann Surface 

xik

0k

0−k

xrk
1k

1−k
C

SWP 
LWP 

BP 

0 0
LWk kβ− ≤ ≤

The LW pole is then “close” to the path 
on the Riemann surface (and it usually 
makes an important contribution). 

We can now show the 
leaky-wave poles! 

LW LW LW
xpk jβ α= −

( )ReLW LW
xpkβ =
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SW and CS Fields 

Total field = surface-wave (SW) field 
                 + continuous-spectrum (CS) field 

Note: The CS field indirectly accounts for the LW pole. 
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Leaky Waves 
LW poles may be important if 

0 0
LWk kβ− ≤ ≤

0
LW kα 

Physical Interpretation 

Re( )LW
LW xpkβ =

0θ

leaky wave 

radiation 

0 0sinLW kβ θ≈

The LW pole is then 
“close” to the path on the 

Riemann surface. 
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Improper Nature of LWs 

The rays are stronger near the beginning of the wave: this gives us 
exponential growth vertically. 

Region of strong 
leakage fields 

β α= −LW
xpk j

“leakage rays” 
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Improper Nature (cont.) 
Mathematical explanation of exponential growth (improper behavior): 

Equate imaginary parts: 
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y y
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(improper) 0 0yα α> → <
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