#### ECE 6341

#### Spring 2016

# Prof. David R. Jackson ECE Dept.





## **Radiation Physics in Layered Media**



$$\psi = \frac{\mu_0 I_0}{4\pi j} \int_{-\infty}^{+\infty} \frac{1}{k_{y0}} \left[ 1 + \Gamma^{TE} \left( k_x \right) \right] e^{-jk_{y0}y} e^{-jk_x x} dk_x$$

#### **Reflection Coefficient**

$$\Gamma^{TE}\left(k_{x}\right) = \frac{Z_{in}^{TE}\left(k_{x}\right) - Z_{0}^{TE}\left(k_{x}\right)}{Z_{in}^{TE}\left(k_{x}\right) + Z_{0}^{TE}\left(k_{x}\right)}$$

where

$$Z_{in}^{TE}\left(k_{x}\right) = jZ_{1}^{TE}\tan\left(k_{y1}h\right)$$



$$Z_0^{TE} = \frac{\omega \mu_0}{k_{y0}}$$

$$k_{y0} = \left(k_0^2 - k_x^2\right)^{1/2}$$

$$Z_1^{TE} = \frac{\omega \mu_0}{k_{y1}}$$

$$k_{y1} = \left(k_1^2 - k_x^2\right)^{1/2}$$

**Poles** 

$$\Gamma^{TE}\left(k_{x}\right) = \frac{Z_{in}^{TE}\left(k_{x}\right) - Z_{0}^{TE}\left(k_{x}\right)}{Z_{in}^{TE}\left(k_{x}\right) + Z_{0}^{TE}\left(k_{x}\right)}$$

Poles: 
$$k_x = k_{xp}$$
  
$$Z_{in}^{TE} \left( k_{xp} \right) = -Z_0^{TE} \left( k_{xp} \right)$$

This is the same equation as the TRE for finding the wavenumber of a surface wave:

$$Z_{in}^{TE}\left(k_{x}^{SW}\right) = -Z_{0}^{TE}\left(k_{x}^{SW}\right)$$

$$\implies k_{xp} = \text{roots of TRE} = k_{x}^{SW}$$

$$I \qquad \begin{array}{c} Z_{00}^{TE} \\ V \\ Z_{01}^{TE} \end{array} \qquad \begin{array}{c} z \\ \end{array}$$

#### Poles (cont.)



If a slight loss is added, the SW poles are shifted off the real axis as shown.

#### Poles (cont.)



For the lossless case, two possible paths are shown here.

# Review of Branch Cuts and Branch Points

In the next few slides we review the basic concepts of branch points and branch cuts.

Consider 
$$f(z) = z^{1/2}$$
  $z = x + jy = r e^{j\theta}$ 

$$z^{1/2} = \left(r e^{j\theta}\right)^{1/2} = \sqrt{r} e^{j\theta/2}$$









The origin is called a branch point: we are not allowed to encircle it if we wish to make the square-root function *single-valued*.

In order to make the square-root function single-valued, we must put a "barrier" or "branch cut".



Here the branch cut was chosen to lie on the negative real axis (an arbitrary choice).

We must now choose what "branch" of the function we want.

$$z = r e^{j\theta} \qquad z^{1/2} = \sqrt{r} e^{j\theta/2}$$

 $-\pi < \theta < \pi$ 

This is the "principle" branch, denoted by  $\sqrt{\chi}$  .



Here is the other choice of branch.

$$z = r e^{j\theta} \qquad z^{1/2} = \sqrt{r} e^{j\theta/2}$$
$$\pi < \theta < 3\pi$$



Note that the function is discontinuous across the branch cut.

$$z = r e^{j\theta} \qquad z^{1/2} = \sqrt{r} e^{j\theta/2}$$

$$-\pi < \theta < \pi$$



The shape of the branch cut is arbitrary.



#### The branch cut does not have to be a straight line.

$$z = r e^{j\theta}$$

 $z^{1/2} = \sqrt{r} e^{j\theta/2}$ 

In this case the branch is determined by requiring that the squareroot function (and hence the angle  $\theta$ ) change continuously as we start from a specified value (e.g., z = 1).



Consider this function:

$$f(z) = \left(z^2 - 1\right)^{1/2}$$

(similar to our wavenumber function)

What do the branch points and branch cuts look like for this function?

$$f(z) = (z^{2} - 1)^{1/2} = (z - 1)^{1/2} (z + 1)^{1/2} = (z - 1)^{1/2} (z - (-1))^{1/2}$$



There are two branch cuts: we are not allowed to encircle either branch point.

e

Geometric interpretation

$$f(z) = (z-1)^{1/2} (z-(-1))^{1/2} = w_1^{1/2} w_2^{1/2}$$



#### **Riemann Surface**

The Riemann surface is a set of multiple complex planes connected together.

The function  $z^{1/2}$  has a surface with <u>two</u> sheets.

The function  $z^{1/2}$  is <u>continuous</u> everywhere on this surface (there are no branch cuts). It also assumes all possible values on the surface.



**Georg Friedrich Bernhard Riemann** (September 17, 1826 – July 20, 1866) was an influential German mathematician who made lasting contributions to analysis and differential geometry, some of them enabling the later development of general relativity.

#### **Riemann Surface**

The concept of the Riemann surface is illustrated for

$$f(z) = z^{1/2} \qquad z = r e^{j\theta}$$

Consider this choice:

Top sheet: 
$$-\pi < \theta < \pi$$
  $(\sqrt{1} = 1)$   
Bottom sheet:  $\pi < \theta < 3\pi$   $(\sqrt{1} = -1)$ 

For a single complex plane, this would correspond to a branch cut on the negative real axis.



### Riemann Surface (cont.)



### Riemann Surface (cont.)



#### **Branch Cuts in Radiation Problem**

Now we return to the problem (line source over grounded slab):

$$\psi = A_{z}$$

$$\psi = \frac{\mu_{0}I_{0}}{4\pi j} \int_{-\infty}^{+\infty} \frac{1}{k_{y0}} \left[ 1 + \Gamma^{TE}(k_{x}) \right] e^{-jk_{y0}y} e^{-jk_{x}x} dk_{x}$$

$$k_{y0} = \left(k_0^2 - k_x^2\right)^{1/2}$$

Note: There are no branch points from  $k_{v1}$ :

$$k_{y1} = \left(k_1^2 - k_x^2\right)^{1/2} \qquad Z_{in}^{TE}\left(k_x\right) = jZ_1^{TE}\tan\left(k_{y1}h\right) \qquad Z_1^{TE} = \frac{\omega\mu_0}{k_{y1}}$$

(The integrand is an even function of  $k_{v1}$ .)

#### **Branch Cuts**

$$k_{y0} = \left(k_0^2 - k_x^2\right)^{1/2} = \left(k_0 + k_x\right)^{1/2} \left(k_0 - k_x\right)^{1/2}$$
$$= -j\left(k_x - k_0^2\right)^{1/2} \left(k_x + k_0^2\right)^{1/2}$$

Note: It is arbitrary that we have factored out a -j instead of a +j, since we have not yet determined the meaning of the square roots yet.

Branch points appear at  $k_x = \pm k_0$ 

No branch cuts appear at  $k_x = \pm k_1$  (The integrand is an even function of  $k_{y_1}$ .)

Branch Cuts (cont.)

$$k_{y0} = -j(k_x - k_0)^{1/2} (k_x + k_0)^{1/2}$$



Branch cuts are lines we are not allowed to cross.

#### Branch Cuts (cont.)



#### Branch Cuts (cont.)



#### **Riemann Surface**



#### There are two sheets, joined at the blue lines.

The path of integration is on the top sheet.

### **Proper / Improper Regions**

Let

$$k_{x} = k_{xr} + jk_{xi}$$
$$k_{0} = k_{0}' - jk_{0}''$$

The goal is to figure out which regions of the complex plane are "proper" and "improper."

$$k_{y0} = \left(k_0^2 - k_x^2\right)^{1/2}$$

"Proper" region:  $\text{Im } k_{y0} < 0$ "Improper" region:  $\text{Im } k_{y0} > 0$ 

Boundary: Im  $k_{v0} = 0$ 

$$\implies k_{y0} = \text{real} \implies k_{y0}^2 = k_0^2 - k_x^2 = \text{real} > 0$$

#### Proper / Improper Regions (cont.)

Hence 
$$\left(k_{0}' - jk_{0}''\right)^{2} - \left(k_{xr} + jk_{xi}\right)^{2} = \text{real} > 0$$
  
 $\left(k_{0}'^{2} - k_{0}''^{2} - k_{xr}^{2} + k_{xi}^{2}\right) + j\left(-2k_{0}'k_{0}'' - 2k_{xr}k_{xi}\right) = \text{real} > 0$ 

Therefore

$$k_{xr}k_{xi} = -k_0'k_0''$$
 (hyperbolas)



Proper / Improper Regions (cont.)





On the complex plane corresponding to the bottom sheet, the proper and improper regions are reversed from what is shown here.

#### **Sommerfeld Branch Cuts**



Complex plane corresponding to top sheet: proper everywhere Complex plane corresponding to bottom sheet: improper everywhere



Note: We can think of a two complex planes with branch cuts, or a Riemann surface with hyperbolic-shaped "ramps" connecting the two sheets.

The Riemann surface allows us to show <u>all possible poles</u>, both proper (surface-wave) and improper (leaky-wave).

#### **Sommerfeld Branch Cut**



The branch cuts now lie along the imaginary axis, and part of the real axis.

#### Path of Integration



The path is on the complex plane corresponding to the top Riemann sheet.

#### **Numerical Path of Integration**



#### Leaky-Mode Poles



### **Riemann Surface**



The LW pole is then "close" to the path on the Riemann surface (and it usually makes an important contribution).

# SW and CS Fields



#### Total field = surface-wave (SW) field + continuous-spectrum (CS) field

Note: The CS field indirectly accounts for the LW pole.



LW poles may be important if

$$-k_0 \le \beta^{LW} \le k_0$$
$$\alpha^{LW} \ll k_0$$

The LW pole is then "close" to the path on the Riemann surface.



#### **Improper Nature of LWs**



The rays are stronger near the beginning of the wave: this gives us exponential growth vertically.

#### Improper Nature (cont.)

Mathematical explanation of exponential growth (improper behavior):

$$k_{y0}^{LW} = \left(k_0^2 - k_{xp}^{LW}\right)^{1/2}$$
$$\implies \left(k_{y0}^{LW}\right)^2 = k_0^2 - \left(k_{xp}^{LW}\right)^2$$
$$\implies \left(\beta_y - j\alpha_y\right)^2 = k_0^2 - \left(\beta - j\alpha\right)^2$$

Equate imaginary parts:

$$\beta_{y}\alpha_{y} = -\beta \alpha$$
$$\alpha_{y} = -\alpha \left(\frac{\beta}{\beta_{y}}\right)$$

 $\alpha > 0 \rightarrow \alpha_y < 0$  (improper)