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Finite Source

j(kxx+kyy)

For a phased current sheet: (X Y) _sO

The tangential electric field that is produced is:
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We can also write
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E xyz

Comparing with the previous result, we have

Et (kx’ky’ Z) :QViTM (Z)[_is Q}_ﬁ

Similarly,

k X+k y)dk dk

H, (k. ky, 2) =01 (2)[ -9 |+ 9 1™ (2)| -, - |

This motivates the following identifications:



Modeling equations for horizontal electric surface current:

VTM(Z):Et(kX,ky,z)-Q

VTE(z):—Et(kX ky,z)-ﬁ

1™ (z)=H, (k,.k,,z)-0

1™ (z) =H,(k,.k,,z)-¥
1M =-J,(k,.k
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Example

Find E (X,Y,2)
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or
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_Gxx ny ze )
G(x-x,y-vy,z2,2)=|G, G, G,
sz C-:'zy Gzz

where
Gij = Ei (X, Y, Z) due to the unit-amplitude electric dipole at (X’, Yy, z')
J(xy,2)=]8(x=x)5(y-Y)o(z-17)

From superposition:
Note: We have translational invariance due to the infinite substrate.

(x,y;2,2') j _[CZB x—x,y—y,2,2")-J,(x,y";z")dx dy’

E
X S We assume here that
where E =| E, Jo=|Jy the currents are located
on a planar surface z'.
| EZ ] | J SZ _|
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E(x,y;2,7")= _[ j(:3 x—x,y—y,2,2")- 3, (X, y’;z")dx"dy’

This is recognized as a 2D convolution:

E:g*ls

Taking the 2D Fourier transform of both sides,

E-GJ,

where
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. j Q (kx , ky L, Z') is called the spectral-domain dyadic Green'’s function.

Ik
I
G

It is the Fourier transform of the spatial-domain dyadic Green'’s function.

Assuming we wish the X component of the electric field due to an X-directed
current J., (x’, y”), we have

E, =G,J

X XX SX

~

In order to indentify G, , we use

L
ey

E (X,y,2,2") =

[ 3 OV (22 0V (22)]

e_J(kXX+kyY)dedky
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We then have:
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éxx (kx1ky; Z, Z,): —kiz[kaiTM (Z, Z’)—l— ijiTE (Z, Z’):|

t

The other eight components could be found in a similar way.

We could also find the magnetic field components.

We can also find the fields due to a magnetic current.

G

XX

= G)i‘] (the xx component of the electric field due to an electric durrent)
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The different types of spectral-domain dyadic Green’s functions are:

G--E‘] Gives electric field due to electric current

G:-" Gives electric field due to magnetic current

G™ Gives magnetic field due to electric current

G™ Gives magnetic field due to magnetic current

Note:
There are 36 terms here, though many are equal by reciprocity or symmetry.
There are 20 unique terms (five from each type of Green’s function).
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These results are derived in Notes 44.

~

e ™ TE _
ITM:H Is :_Jsu VS __Msu

Definition of “vertical planar currents”:

J,(X,y,2)=Jg,(XY)d(2)
M, (x,y,2) =M, (% Y)5(2)
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M. :

V; = voltage due to 1[A] parallel current source
l; = current due to 1[A] parallel current source

Z V, = voltage due to 1[V] series voltage source
|, = current due to 1[V] series voltage source
I ™ )\ I ™ 1
™ ™
o+V " —0o o+V " =0

—o— O

IT|\/| VTM
S S
@ @ @ (R
V™ (z)=V™ (2)1M V¥ (z)=v" (2)V.™
™ (z)= 1™ (2) 1]V 1™ (2)= 1" (2)v;"
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V; = voltage due to 1[A] parallel current source

TE : l; = current due to 1[A] parallel current source
Z " V, = voltage due to 1[V] series voltage source

|, = current due to 1[V] series voltage source

i i

& +V'E =4 S+V'E—4§
—(o— @
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VT (2)=V," (z)15" VM (z)=V," (2)V,"
I (2)= 1 (2)1 I (2)= 1 ()

19



Find G/

This is the xx component of the spectral-domain dyadic Green’s function
that is used to obtain H, from M,,.

Start with:
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AL (K, Ky 12) = =N, (K (2)+ K2 (2)

X! yl
t

Hence, we have

Gy (kx,ky;z,z')z‘kiz[kf'vm (2.2)+kG1" (2.2

t

Note: The notation (z,z’) has been used in the final result to
emphasize that the terms depend on both z and 7'.
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Example (E, from J_,)

Start with a given planar current distribution. Jg (X, Y)
Take the Fourier transform of the surface current. J o (kx, ky)

v 1y

Use the appropriate spectral-domain
dyadic Green’s function to find the E =GYJ_ (k k )
Fourier transform of the field of interest.

g "

Take the inverse Fourier transform 1 7% g = i(kxek, )
(2D integral in k, and k) to find the E, = PJRY _[ j G2J. e’ dk dk,
field of interest in the space domain. (27)° 2, -,
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