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ECE 6341  
Spring 2016 

 
HW 2 

 
Assigned problems: 1-6, 9-11, 13-15.     

 
1) Assume that a TEN models a layered structure, where the x direction (the direction 

perpendicular to the layers) is the direction that the transmission line in the TEN runs. 

Normally, we would use waves that are TEx and TMx. Each polarization would then have a 

separate TEN model (no coupling of waves at the boundaries). Within each model (TEx or 

TMx), each layer would have a wave impedance that is unique for a given value of kx.  

What would happen if you tried to use TEz and TMz waves in the TEN? Would you be able 

to uniquely define a wave impedance for the waves? For example, would the ratio Ey / Hz be 

the same as the ratio – Ez / Hy if you had a TEz or a TMz wave? Justify your answer by 

showing the calculation. Compare with what happens to these ratios when you use TEx and 

TMx waves.  

 

2) Consider a hollow rectangular waveguide of dimensions a and b in the x and y directions, 

where the left side wall is at x = 0 and the bottom side wall is at y = 0.  Assume a TEz (m,n) 

mode described by  

( ), , cos cos
mn
zjk z

z
m x n yF x y z e

a b
π π −   =    

   
. 

Show that this mode can also be written as a sum of TMx and TEx modes by solving for Ax 

and Fx that will produce the same field inside the waveguide as does the original Fz. Hint: In 

writing down expressions for Ax and Fx, consider what boundary conditions they will have to 

satisfy at the walls.  

Next, consider the TE10 mode as a special case. Solve for Ax and Fx for this mode. 
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3) A grounded dielectric slab of Teflon has a relative permittivity of 2.2 and a thickness of 60 

mils (1.524 mm).  Use a numerical search to find the normalized phase constant 0/z kβ  of 

the TM0 surface-wave mode at the following frequencies: 1 GHz, 10 GHz, 100 GHz. 

 

4) Assume that we have the same grounded slab as in the previous problem, but now we are 

interested in the TM1 mode. First, find the cutoff frequency of this mode. Then, by 

numerically searching for the improper surface-wave solutions, find the splitting point 

frequency fs. Then, for a frequency that is 10% lower than the splitting point frequency (i.e., f 

= 0.9 fs) do a numerical search to find kz / k0 for the complex TM1 leaky-mode solution (the 

one that has a positive attenuation constant αz). You may use whatever numerical search 

routine you want. Note that the secant method works in the complex plane, and is usually a 

good choice. This method is allows you to find the complex roots (zeros) of a complex 

function f (z). The method is represented by the following iterative formula (which requires 

two initial guesses z0 and z1): 

( ) ( )
( ) ( )1 1

1

n
n n n n
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f z
z z z z

f z f z+ −
−

 
= − −   − 

. 

 

Note: If you have trouble finding the root 10% below the splitting point frequency, you can 

try lowering the frequency gradually below the splitting-point frequency, and tracking the 

root continuously as a function of frequency.  

 

5) Draw a ray picture for a leaky mode that has a negative value of βz (the phase velocity is in 

the negative z direction) but the wave is attenuating in the positive z direction. That leaky 

wave still radiates outward from the structure. That “rays” thus point in the backward 

direction (to the left of the positive x axis). Such waves, called “backward waves,” are very 

important on some types of guiding structures, such as periodic structures. Explain using the 

ray picture why a leaky wave that is backward is proper. Next, give a mathematical proof of 

why this wave must be proper, similar to the proof of why a leaky wave on a simple guiding 

structure such as a grounded slab (which is a “forward” leaky wave) must be improper.   
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6) A TEx leaky mode has a field on the interface (x = 0) due to a line source at z = 0 that is 

represented as  

( )0, ,
LW
zjk z

yE z Ae−=  

where LW
z z zk jβ α= −  and A is an amplitude constant. The exact electric field above the 

interface is  

( ) ( )1, 0, ,
2

x zjk x jk z
y y z zE x z E k e e dk

π
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− −
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= ∫   

where ( )1/ 22 2
0x zk k k= − . The branch of the square root is chosen so that that Re 0xk >  when 

kx is real, and Im 0xk <  when kx is imaginary.  

Perform the integration above in order to show that 

( )
( )2 2

0, 2 ,
LW
z

y z LW
z z

kE k jA
k k

 
 = −
 − 

  

and thus derive an exact expression for the field above the interface due to the leaky mode. 

(The expression will be in the form of an integral, as shown above). Explain how you are 

handling the limit at ±∞ in your integral evaluation.  

 

7) Assume that we have a TEx leaky mode as in Prob. 5, with 00.5z kβ =  and 00.005z kα = . 

Plot the magnitude of the field ( ),yE x z  versus x. Plot over the range 00 20x λ< <  for the 

following fixed values of z: 0 0 0 0 01 , 5 ,10 , 50 ,100z λ λ λ λ λ= . Comment on the variation that 

you observe vertically. The field should be calculated numerically by using the result of 

Prob. 5. Assume that A = 1 (the amplitude of the leaky-wave field on the interface is unity). 
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8) According to the method of stationary phase (or the method of steepest-descent) which will 

be discussed later in the semester, we can asymptotically evaluate the field radiated by the 

leaky mode, by using the asymptotic result for k0ρ → ∞ that says 

( ) ( ) ( )
0 4

0 0
0

2cos ,x z
jjk x jkjk z

z z zf k e e dk f k k e e
k
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ρπθ
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where ( )zf k  is an arbitrary function of zk , ( )1/22 2
0x zk k k= − , 0 0 sinzk k θ= , and in 

cylindrical coordinates cosx ρ θ= , sinz ρ θ= . Assuming this relation, derive the far-field 

pattern ( ),FF
yE ρ θ  of the TEx leaky mode in Problem 5. 

 

9) The far-field pattern of a TEx bi-directional leaky mode on a grounded slab is given by 

( ) ( ) ( ) ( )0 0sin sin0,
LW
zj k z j k zjk z

yF E z e dz e e dzθ θθ
∞ ∞

+ +−

−∞ −∞

= =∫ ∫ . 

Evaluate this integral and show that the result is  

( )
( )22 2

0

2
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θ

 
 =
 − 

. 

 

10) Plot the far-field pattern of a TEx bi-directional leaky wave having the following properties:  

a) ( )0
3/ 0.02

2zk k j= −  

 b)  ( )0
3/ 0.002

2zk k j= − . 
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Plot the magnitude of the far-field pattern (i.e., the array factor given in the problem above) 

vs. angle θ in degrees (a rectangular plot, not a polar plot), with the angle θ in the range -90o 

< θ < 90o. (Note: The pattern should be symmetric about θ  = 0.) Normalize your patterns so 

that the magnitude of the far-field pattern is unity at the peaks of the beam. 

 

11) Repeat the previous problem, assuming now that ( ) 01.5z kβ =  and 00.002z kα = . This 

corresponds to a leaky mode that is in the non-physical (slow-wave) region.  

 

12) Assume that we have a leaky-wave field described by  

( ) ( ), x zj k x k zx z eψ − +=  

where 

( )1/22 2
0x zk k k= − . 

Introduce the following change of variables: 

0 0cos , sinx zk k k kζ ζ= = , 

where r ijζ ζ ζ= +  is a complex number with 0 / 2rζ π< <  and 0iζ <  (which corresponds 

to 0zβ > , 0zα > , 0xβ > , 0xα < ).  Also, introduce cylindrical coordinates as  

cos , sinx zρ θ ρ θ= = , 

where θ is the angle in cylindrical coordinates measured from the x axis, and ρ is the radial 

distance in cylindrical coordinates from the y axis (see the figure in Prob. 6).  Show that the 

magnitude of the leaky-wave field may be written as  

( ) ( ) ( )0 sin sinh, r ikx z e ρ θ ζ ζψ − −= . 

Next, show that  

( ) ( )0sin sin sechr iθ ζ θ θ ζ− = − , 

where θ0 is the angle from the x axis to the power flow vector (β vector), so that 

0 0 0 0cos , sinx zk kβ θ β θ= = . 

(Hint: Use expressions for βx and βx in terms of ζ.) 
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Finally, conclude that  

( ) ( ) ( )0 0sin sech sinh, i ikx z e ρ θ θ ζ ζψ − −= . 

Use this result to explain why the magnitude of the leaky-wave field always decreases with 

distance ρ in cylindrical coordinates, as long as we are in the “leakage region” so that θ  > θ0. 

 

13) A sheet impedance Zs is a hypothetical sheet layer that has a continuous tangential electric 

field across it, but it supports a tangential (i.e., in the plane of the sheet, which we can 

assume is the yz plane) surface current Js in the direction of the tangential electric field Et. In 

general, we would have, from the definite of sheet impedance, that t s sE Z J= . Assume that a 

particular component of tangential electric field (e.g., Ez) is being modeled as voltage on a 

TEN model of a waveguiding structure that contains a sheet impedance, and that the 

corresponding perpendicular component of the tangential magnetic field (e.g., -Hy) is being 

modeled as current on the TEN. (The TEN runs in the x direction.) Show that the sheet 

impedance appears in the TEN as a lumped parallel impedance element, with a value of Zs 

Ohms. 

 

14) Consider a “partially reflecting surface” (or “PRS”) type of leaky-wave antenna structure that 

consists of a lossless sheet impedance s sZ jX=  (the PRS) above a grounded dielectric slab 

region as shown below. There is air above the structure. Assume a TMx leaky mode with a 

complex wavenumber kz is propagating on the structure in the z direction (there is no y 

variation). Draw a TEN for this structure and use the TRE method to derive a transcendental 

equation for the unknown complex wavenumber kz of the leaky wave. Choose a reference 

plane that is just below the sheet impedance.  

In the transcendental equation, how do you choose the square root in order to calculate kx0 

(the vertical wavenumber in the air region) from kz?  

Practical note: The sheet impedance could be modeling a partially-reflecting surface that is a 

periodic frequency selective surface (FSS) such as an array of metal patches, etc.  
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15) A rectangular waveguide is loaded with dielectric slabs on either side, as shown below. 

Derive transcendental equations for the wavenumber kz and the cutoff frequencies for all four 

possible modes that can exist inside the waveguide. The four mode types are: TMx
e, TMx

o, 

TEx
e, and TEx

o, where the (e,o) superscript denotes even or odd mode.  
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