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ECE 6341 
Spring 2016 

 
HW 4 

 
Assigned problems: 1-3, 5-9.    

 
1) Consider an infinite line source of current having the form 

( ) ( )0exp zI z jk z= − ,  

which is flowing on the z axis in an infinite medium with wavenumber k. Assume that the 
wavenumber kz0 is real, so that the integral converges. By matching the magnetic vector 
potential between cylindrical coordinates and rectangular coordinates (the latter solution was 
done in ECE 6340), derive the following mathematical identity: 

( )0 0(2)
0 0

z z
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where  ( )22R z zρ ′= + −  and ( )1/ 22 2
0 0zk k kρ = − .  

 
The radial wavenumber kρ0 is chosen to be either a positive real number or a negative 
imaginary number. 
 
Assume next that kz0 becomes complex, so the current represents a leaky-wave line source. 
Would the integral on the left-hand side of the identity still exist? Would the right-hand side 
of the identity still exist? Note that in this case the right-hand side of the above identity 
represents the analytic continuation of the integral on the left-hand side into the complex 
wavenumber plane.  
 
 

2) Consider a slotted rectangular waveguide leaky-wave antenna, as shown below, which has an 
infinite narrow slot. Assume that the structure is fed with a source at z = 0 and a bi-
directional leaky wave propagates in both directions from this point. Therefore, the slot has a 
voltage given by 

( ) 0

LW
zjk zV z A e−= ,   where LW

zk jβ α= − .  
 

Use the equivalence principle and image theory to show that the field above the infinite 
conducting baffle (ground plane) is that of a magnetic current flowing on the z axis in free 
space,  

( ) 02
LW
zjk zK z A e−= . 
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3) As a continuation of the previous problem, consider a leaky-wave magnetic current flowing 

on the z axis in free space that has the form  

( ) 02
LW
zjk zK z A e−= ,   where LW

zk jβ α= − .  

Using duality along with Fourier transform theory, as was done in class for an arbitrary line 
current I (z), derive an expression for the electric vector potential Fz (ρ,φ) at any point in 
space (your answer will be in the form of a single integral in kz).  

 
 
4) Derive expressions for all of the field components for the previous leaky-wave antenna. This 

includes Ez, Hz, Eρ, Hρ, Eφ, Hφ. (Note: Some of these components may be zero.) 

 
5) Find the far-field components Eθ (r, θ, φ) and Eφ (r, θ, φ) of the bi-directional leaky-wave 

magnetic line-source current in the previous problem. Do this by first finding the electric 
vector potential Fz in the far field by using the “far-field identity” that was discussed in class, 
namely 

( )2 1( ) ( ) ~ 2 ( cos )z
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∫ . 

 
This is valid as r →∞  in spherical coordinates, with 0, 180θ ≠  .  
 

6) A microstrip antenna is placed on the surface of a rocket (see the figure below). The center of 
the patch is located on the x axis. The two radiating edges of the microstrip antenna are 
modeled as two slots, each having a one-volt drop (V = 1) across the edge, measured from 
bottom to top. Therefore, for each slot the electric field is given by   

V(z) - + 
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1ˆE z
z

 =  ∆ 
, 

 
where ∆z is the width of each slot in the z direction. The slots may be assumed to be of 
infinitesimal width, so that ∆z → 0. The electric field of the dominant microstrip antenna 
mode is assumed to be uniform across the width of the patch, in the φ direction, and therefore 
the electric field inside the slots is uniform in the φ direction (that is why there is no φ 
variation in the above equation for the slot field).  The length of the microstrip antenna is L in 
the z direction. The two radiating edges, being modeled by the slots, are located at z = L/2 
and z = -L/2. The width of the patch is W in the φ direction (the angle subtended by the two 
nonradiating edges is α = W / a, with the slot fields existing in the region - α / 2 < φ < α / 2). 

 
Determine the far field pattern Eθ (r, θ, φ).  
 

 

 

 

 

 

 

 

 

 

 
 

 
 
7) A circular loop of uniform current I0 is in free space as shown below. The loop has a radius b 

and it lies in the xy plane. Because the current is uniform, the field produced will be purely 
TEz.  The field inside and outside the loop may be written as spectral integrals (integrals over 
a wavenumber) as  
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where 

( )1/22 2
0 zk k kρ = − . 

 
Solve for the unknown coefficient functions A(kz) and B(kz) by applying boundary conditions 
at ρ = b. These include the condition that the field Eφ should be continuous at this boundary, 
and the condition that the field Hz should be discontinuous. Note that the ring of current can 
be thought of as a surface current at ρ = b, having the form  

( )0
ˆ

sJ I zφ δ= . 
 

As a helpful hint, recall that the delta-function has the following representation: 

( ) 1
2

zjk z
zz e dkδ

π
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8) Now consider the same circular loop surrounding a perfectly conducting pipe of radius a, as 

shown below. (This is an important problem in some well-logging applications, where the 
pipe could be modeling a well-logging tool.) The total electric vector potential may be 
written as the sum of an incident potential and a scattered potential, as  

i s
z z zF F F= + , 

 
where the incident potential is the potential of the current loop in free space, which is what 
you solved for in the previous problem. The scattered potential is that due to the currents 
induced on the pipe. The scattered potential may be written in the form  
 

( ) ( ) ( )2
0

1 ,
2

zjk zs
z z zF C k H k e dk aρρ ρ

π

∞
−

−∞

= >∫ . 

 

x 

y 

z 

b 

I0 



 5 

Solve for the unknown coefficient function C(kz) by applying the boundary condition that the 
total tangential electric field Eφ  should be zero on the surface on the conducting pipe.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9) Now consider that there are two loops surrounding the same pipe in the previous problem. 
The first loop of radius b is at z = 0, as in the previous problem. The second loop (not shown) 
is identical to the first, but it is located at a height z = h. The first loop is thought of as a 
transmitter coil and the second loop is thought of as a receiver coil. This configuration is of 
practical interest in the well-logging area. (In many well-logging sensors, there are 
transmitter and receiver coils surrounding the conducting tool body.) 

The mutual inductance M between the two coils may be found from the open-circuit voltage 
induced on the receiver coil, which is 

( ) ( ) ( ) ( )1
2 0 2 ,V j M I b E h bφω π= = , 

 
where V2 is the open-circuit voltage induced at the terminals of coil 2  (assuming that we 
introduce a terminal pair at some point on loop 2), I0 is the current on the transmitter coil 1, 
and Eφ

(1)
 (h,b) is the electric field produced by coil 1 (radiating in the presence of the pipe)  at 

z = h and ρ = b. 

Derive a formula for the mutual inductance M between the two coils, using your solution 
from the previous problem to determine the field Eφ

(1) (h,b). Your formula will be in terms of 
a spectral integral over kz. 
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