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ECE 6341 
Spring 2016 

 
HW 5 

 
Please do Probs. 1-4, 7, 12-16.  

 

1) (This is Prob. 6.1 in Harrington.) Assume that we have a potential  

( )ˆ , ,zA zA r θ φ=  

And from this, calculate what the (six) components of the electric and magnetic fields would 
be in spherical coordinates, in terms of ψ  = Az. Comment on how the field expressions 
compare to what is in the TMr and TEr tables. Are they more complicated compared to using 
Ar, for example?   

(Note that in the Harrington book the convention for the vector potentials is different than in 
the class notes, so that the vector potentials are different by factors of µ  and ε . Please use 
the class notation.) 

2) Assume that we try to introduce potentials similar to the Debye potentials, but in cylindrical 
coordinates. That is, assume we try to use 

 ˆA Aρρ=  

 ˆF Fρρ= . 

Using a derivation that parallels what was done in class in spherical coordinates, show that 
this choice of potentials will not work. For example, assume that we have A in the form 
above. Then start with the vector wave equation, and take the z and φ components of both 
sides, and show that there is no single gauge condition (equation that relates Aρ to Φ) that 
will allow both resulting equations to be satisfied.  

3) As continuation of the above problem, assume that there is no z variation in the problem. 
Then show that now there is a gauge condition that can be imposed on Aρ (i.e., a relationship 
between Aρ and Φ) that will satisfy both the z and φ components of the vector wave equation. 

4) Consider the earth as a giant spherical resonator. For a field corresponding to a resonant 
mode that is inside the earth, assume (approximately) that the outer surface of the earth 
appears as a PMC, since the permittivity of the earth is considerably higher than that of the 
surrounding air region. Derive formulas for Ar and Fr for the TMr and TEr modes of the earth 
resonator, as well as formulas for the resonant frequencies of the modes. Determine the 
lowest resonance frequency of the earth, and the corresponding mode(s). Calculate a value 
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for the lowest resonance frequency, assuming that the radius of the earth is 6,378 km and the 
relative permittivity of the earth is 6.0. Assume that the earth is nonmagnetic for simplicity 
(which may not be a reasonable assumption for all points inside the earth!) (Note: You will 
need Tables 6.1 and 6.2 in the Harrington book, which are also given on slides 8 and 13 of 
Notes 22.) 

5) A hemispherical PEC resonator is shown below. It is excited by a probe feed along the x axis 
at x = x0 (this determines the cos/sin nature of the azimuthal functions). Determine general 
expressions for Ar and Fr for the TMr and TEr resonant modes of the cavity. Which mode has 
the lowest resonance frequency? Give a formula for the resonant frequency of this mode. 
(Hint: Explain why the PEC boundary condition at z = 0 requires n+m to be an odd integer 
for the TM case and an even integer for the TE case. To do this, consider the even/odd nature 
of the associated Legendre polynomials.) 

 

 

 

 

 

 

 

6)  For the above hemispherical resonator excited by the coaxial probe, what should the offset 
of the probe from the center of the cavity (x0) be in order to provide maximum excitation of 
the lowest resonant mode? The maximum excitation will occur at the point where the electric 
field of the mode in the direction of the probe is a maximum. (The solution for x0 may be 
determined numerically. The answer can potentially be anything between 0 and a.) 

7) Consider the “spherical coax” discussed in class with cone angles θ1 and θ2. Show that the 
characteristic impedance is 
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The characteristic impedance is defined as 

 0 /Z V I+ += ,  

where V+ is the voltage between the two cones at a given radial distance r for an outgoing 
wave, and I+ is the current on the inner cone at the radial distance r. (Make sure you show 
clearly all of your steps.) 

z 

Coax (x = x0)  

a 
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8) Consider a symmetric biconical dipole antenna fed by a twin-lead transmission line. If the 
dipole arms were infinite in length, we would have an infinite biconical structure as shown 
below, which would operate in the TEMr mode. In this case the bandwidth of the antenna 
would be infinite. What would the input impedance be? (Hint: Use the result from the 
previous problem. The infinite biconical antenna may be thought of as a special case of the 
spherical coax.) 

 

 

 

 

 

9) Consider a static solution to the “spherical coax” system, where one PEC cone at the angle θ  
=θ 1 is at a potential V1 and another PEC cone at the angle θ  =θ   2 (θ  2 >θ  1) is at a potential V2. 
Solve the Laplace equation in spherical coordinates (assuming no variation in r or φ) to show 
that the static solution for the potential between the two cones is 

 1 2ln tan
2
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and the electric field between the two cones is  
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and 
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Therefore, the time-harmonic solution for the TEM mode (discussed in class) has the same 
form as the static solution, with the propagation term exp (-jkr) added. (Thus, the propagation 

θ1 
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properties are similar to the TEMz mode of a regular coax, where the field configuration of 
the TEMz mode is that of a static field except that a term exp (-jkz) has been added.) 

 

10) A high-power electromagnetic pulse (EMP) simulator consists of a perfectly conducting cone 
(which may be modeled as infinite) over a perfectly conducting ground plane, as shown 
below. Assume that the pulse generator puts out a time-varying voltage pulse V(t) with 
respect to ground.  

a) What is the voltage V(R,t) between the cone and the ground plane at a distance R away 
from the source? 

b) What is the electric field Ez(R,t) on the ground plane at a distance R away from the source?  

c) Calculate the power P(t) that is being radiated, in terms of the known pulse voltage  
function V (t).  

Hint: In the phasor domain, the voltage propagates radially as exp (-jkr). What does this 
correspond to in the time domain? Also, note that the voltage and electric field in the time 
domain on this lossless TEMr structure are related in the same way as they are in the 
frequency domain, or in statics.) Use the results from Prob. 7 to the extent possible.  

 Note: This system may be thought of as a limiting case of the spherical coax problem, where 
the inner cone has an angle θ 1  = θ 0 and the outer cone has an angle θ 2  = π / 2. 

 

  

 

 

 

 

 

11) (This is Prob. 6-30 in Harrington.) A vertical infinitesimal unit-strength electric dipole is at 
the top of a mountain as shown below. The mountain is modeled as an infinite perfectly 
conducting cone. Show that the Eθ component of the electric field that is radiated can be 
expressed as  

 ( ) ( )
1 1

(2)1 ˆ cos sinE A H kr P
rθ υ υ θ θ′ ′=  

where A is some constant and 1υ υ=  is the first root of the equation 

Pulse generator 
R Observation point 

0θ
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 ( )0cos 0Pυ θ = . 

Give a convincing explanation of why the first root υ1 should be used. Hint: To establish 
which root is correct, consider the approximate table of eigenvalues given in the table of 
Prob. 6-30 in Harrington. This table shows that for the first root, we have the property that υ1 
= 1 for the case of θ0 = π  / 2, for which the problem is that of a dipole over an infinite ground 
plane (which has a simple solution with a known angular variation in θ ).  

 
 

 

 

 
 

  

 
 

 

 

 

 

 

 

12) Start with the field Ar from a unit-amplitude z-directed dipole in free space, as derived in 
class. Show that all components of the electric and magnetic fields obtained from this vector 
potential are the same as the known fields of a dipole (which are usually obtained from the 
vector potential Az). 

13) A spherical metal ball bearing has a diameter of 1.0 cm. What is the approximate radar cross 
section of the ball bearing at a frequency of 1.0 GHz?  

14) Assume that a small z-directed dipole antenna having a directivity of 1.5 (with respect to 
isotropic) radiates one watt of power at 1.0 GHz, and is located at a distance d = 1 km from 
the same ball bearing as in the problem above. What is the power density in watt/m2 of the 
wave that is scattered back to the antenna by the ball bearing?  
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15) Derive the formula that is given in the class notes for the dipole moment Il of an x-directed 
electric dipole that models a small dielectric sphere that is illuminated by a x-polarized plane 
wave with an electric field amplitude E0, as analyzed in the class notes. (There is no need to 
derive anything that is already in the class notes.) The result should be  
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16) Assume that we have a z-directed unit-amplitude electric dipole on the surface of a perfectly 
conducting sphere of radius a centered at the origin, with the dipole located on the z axis at z 
= a (that is, the dipole sits “on top” of the sphere). This could be a model for a radio 
transmitter located on the surface of the Earth. This dipole will radiate a TMr field. In the far 
field, the electric field will be polarized in the θ direction. Calculate the far field Eθ (r,θ) from 
the dipole.  

Do this by using reciprocity, where “a” is the original dipole current and “b” is a unit-
amplitude “testing” dipole in the far field, oriented in the θ direction. The far field is given by 
<a, b>, whereas <b, a> can be thought of finding the component Er of the scattered field at 
the surface of the sphere, due to an incident plane wave. Note that we have already worked 
out the solution for the scattered field from an incident plane wave in the class notes, and this 
does not need to be derived again. Note: You may have to rotate the coordinates to use the 
solution in the class notes.  
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