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ECE 6341 
Spring 2016 

 
Homework 6 

 
Please do Probs. 1-3, 5-6, and 8-11.  

Please also note the extra-credit problem at the end, which is optional.  

 

1) Use integration by parts to asymptotically evaluate the following integral: 
 

 ( ) ( )
1

0

cosxI e x dx−Ω = Ω∫ . 

2) Use the stationary-phase method to asymptotically evaluate the Bessel function Jn (x)  for 
large x, starting with   

 

 ( ) ( )
0

1 cos sinnJ x n x d
π

θ θ θ
π

= −∫ . 

 

Compare your result with what is available in math handbooks (e.g., Eq. 24.103 of the 
Schaum’s Outline Mathematical Handbook). 

 

3) An infinite uniform line source carries I Amps along the z axis, at a radian frequency ω. By 
using the Fourier transform method, the exact vector potential Az (x,y) for y > 0 is found to be 
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where ( )1/ 22 2
0y xk k k= − .  

 
Apply the stationary-phase method to find Az (ρ) in the far field (kρ >> 1). First convert to 
polar coordinates for the observation point, but do not do a change of variables for kx (i.e., 
leave the integration variable as kx). Check your result by starting with the known exact 
expression  
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and then approximating this expression in the far field.  
 
 
4) The following integral I (r,θ) is a typical “Sommerfeld” type integral (in Hankel form) that 

often appears in the analysis of dipoles in layered-media: 
 

 ( ) ( ) ( )(2)
0, zjk zI r f k H k e dkρ ρ ρθ ρ

∞
−

−∞

= ∫ . 

In this equation ( )1/ 22 2
0zk k kρ= − .  (The square root has the usual interpretation of being 

either a positive real number or a negative imaginary number.)  
 
Evaluate this integral for kr >> 1 using the stationary-phase method. The variables r and θ 
denote the usual spherical coordinates here, with ρ and z denoting the usual cylindrical 
coordinates. Assume that z > 0. Do not do a change of variables for kρ (i.e., leave the 
integration variable as kρ). 
 
(Hint: Approximate the Hankel function with its asymptotic approximation first. Also, 
convert to spherical coordinates.)  
 

5) The modified Bessel function of the first kind has an integral definition that is 
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Use Laplace’s method to asymptotically evaluate the function I0 (Ω) for large Ω. Compare 
your result with what is available in math handbooks (e.g., Eq. 24.107 of the Schaum’s 
Outline Mathematical Handbook). 
 

6) Determine the first two leading terms of the asymptotic approximation to the following 
integral, as Ω becomes large, using Watson’s Lemma. 

 

( ) ( ) 2
1

1

cos sI s e ds−Ω

−

Ω = ∫ . 

 
7) Use Watson’s lemma to derive the first two leading terms of the asymptotic expansion of the 

modified Bessel function I0 (x), defined by the integral in Problem 5.  

Hint: Establish that 2 1 sins θ= − . Then use this to establish that h(s) is given by 
 

 ( )
2

2
2

h s
s

=
−

, 
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where the principle square root is chosen. Discuss the reason for the choice of sign in the 
above equation (i.e., h(s) is positive at s = 0).  Please evaluate all necessary constants in your 
final answer (do not leave special functions in your final answer). 

 
8) Determine the first two leading terms (i.e., the first two non-zero terms) of the asymptotic 

approximation to the following integral, as Ω becomes large, using the “alternative form” of 
Watson’s Lemma. 

 

 ( ) ( )
1

0

sin sI s e ds−ΩΩ = ∫ . 

9) Determine the first two leading terms (i.e., the first two non-zero terms) of the asymptotic 
expansion to the following integral, as Ω becomes large, using the “alternative form” of 
Watson’s Lemma. Please evaluate all necessary constants in your final answer (do not leave 
special functions in your final answer). 
 

( )
1

0

sin( ) sI s e ds−ΩΩ = ∫ . 

 

10) Evaluate the integral  

( ) ( ) ( )(2)
0, zjk zI r f k H k e dkρ ρ ρθ ρ

∞
−
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= ∫ , 

 
for kr >> 1 with θ  fixed, using the steepest-descent method. In this integral  
 

( )1/ 22 2
0zk k kρ= − ,  

 
and the variables r and θ denote the usual spherical coordinates here, with ρ and z denoting 
the usual cylindrical coordinates. To cast the integrand into a form that is suitable for the 
method of steepest descent, use the asymptotic expansion of the Hankel function. Use the 
steepest-descent transformation as part of your derivation (i.e., perform the asymptotic 
analysis in the steepest-descent ζ plane). 
 
Carefully discuss the SDP and how you are choosing the value of the departure angle θSDP.  
 
Note: This is the same integral evaluated previously in problem 4, using the stationary-phase 
method. 
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11) Evaluate the integral 
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Ω −  
 Ω = ∫  

For Ω >> 1, where C is the contour extending from (-∞-j2) to (-∞+j1), going above the origin 
as shown below. Carefully discuss how you are treating any singularities that are present 
when you deform the integration path to the SDP. 

 
 

EXTRA CREDIT 

Consider an infinitively long perfectly conducting cylinder of radius a = 10 λ0 running along 
the z axis, with the z axis at the center of the cylinder. The cylinder is illuminated by a unit-
amplitude plane wave, described by  
 

 0ˆ jk xincE z e−= . 
 

Plot the magnitude of the geometrical optics scattered far field (from Notes 29) vs. angle φ, 
and then plot the magnitude of the exact scattered field vs. angle φ, and compare the two 
(where 0 < φ < 2π in your plot). The exact scattered field may be found from Notes 13. Note 
that in the exact solution from Notes 13, you can approximate asymptotically the Hankel 
function to obtain the scattered field in the far field. (The final result in Notes 29 assumes 
that we are in the far field.) Normalize the plots so that they are both unity at φ = π. 
 
If your program allows it, try the case a = 100 λ0 as well. (The normalized geometrical optics 
result will not change, only the exact solution will.)  Note that the solution given in Notes 13 
will converge more slowly as the radius of the cylinder becomes larger compared with a 
wavelength, so you may encounter numerical trouble.  
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