ECE 6341

Spring 2009

Project

Project Description

A microstrip antenna is placed on the surface of a rocket (see the figure below). The center of the patch is located on the x axis. The two radiating edges of the microstrip antenna are modeled as two slots, each having a one volt drop ($V=1$) across the edge, measured from bottom to top. Therefore, for each slot the electric field is given by

$$
\underline{E}=\underline{\hat{z}}\left(\frac{1}{\delta}\right),
$$

where δ is the width of each slot. The slots may be assumed to be of infinitesimal width, so that $\delta \rightarrow 0$. The electric field is assumed to be uniform across the width of the patch, in the ϕ direction. The length of the microstrip antenna is L in the z direction (the two radiating edges, or slots, are located at $z=L / 2$ and $z=-L / 2$), and the width of the patch is W in the ϕ direction (the angle subtended by the two nonradiating edges is $\Delta \phi=W / a$, with the slot fields existing in the region $-\Delta \phi / 2<\phi<\Delta \phi / 2)$.

Assume the following parameters: $f=10 \mathrm{GHz}, a=10 \lambda_{0}, L=0.5 \lambda_{0} / \sqrt{\varepsilon_{r}}$ with $\varepsilon_{r}=2.2$, and $W=1.5 \mathrm{~L}$.

Project Tasks:

1) Determine the far field pattern components $E_{\theta}(r, \theta, \phi)$ and $E_{\phi}(r, \theta, \phi)$.
2) Write a program (in Mathcad, Matlab, Mathematica, Fortran, etc.) to calculate the radiation pattern $\left|E_{\theta}\right|$ versus ϕ for $\theta=\pi / 2$ (the xy plane). Make a polar plot of the normalized pattern $\left|E_{\phi}\right|$ (normalized to a value of 1.0 at the peak) for $0<\phi<2 \pi$. Plot the normalized pattern in dB , so that the pattern is zero dB at the peak.
3) Make a polar plot of the normalized pattern $\left|E_{d}\right|$ in dB for $1^{\circ}<\theta<179^{\circ}$, for $\phi=0$ (the $x z$ plane) for the same case as above. What happens to the far-field pattern as $\theta \rightarrow 0$ or π ? Look at the formulation for E_{θ} to explain your conclusion.
4) Repeat parts (2) and (3) for a "wraparound" microstrip antenna, which has the same length L but the width W is now equal to the circumference of the rocket, so that $W=$ $2 \pi a$.

Computational Note:

Please check to make sure that you have convergence in your summations when you calculate the far-field patterns!

