ECE 6345

Spring 2015

Prof. David R. Jackson ECE Dept.

Notes 27

Overview

In this set of notes we investigate the transmission line (TL) model for the input impedance of a rectangular patch antenna.

Assumption: The patch is operating in the usual $(1,0)$ mode: the patch acts as a wide microstrip line of width W.

TL Model

TL Model (cont.)

Ignore variation in the y direction: $\underline{J}_{s} \approx \underline{\hat{x}} J_{s x}(x) \quad\left(\mathrm{TM}_{10}\right.$ mode)

Fringing extensions are added at both ends, and x is now measured from the left edge after extending it.

Planar Waveguide Model

Planar waveguide model for wide microstrip line:

SO

$$
Z_{0}=\eta_{\text {eff }}\left(\frac{h}{W_{e}}\right)
$$

Planar Waveguide Model (cont.)

The characteristic impedance and phase constant are given by

$$
\begin{gathered}
Z_{0}=\eta_{0} \frac{1}{\sqrt{\varepsilon_{r}^{e f f}}}\left(\frac{h}{W_{e}}\right) \\
\beta=k_{0} \sqrt{\varepsilon_{r}^{e f f}}
\end{gathered}
$$

From a knowledge of the characteristic impedance and the phase constant, we can then determine the effective width and the effective permittivity.

$$
W_{e}=\eta_{0} \frac{1}{Z_{0}}\left(\frac{h}{\sqrt{\varepsilon_{r}^{e f f}}}\right)
$$

$$
\varepsilon_{r}^{e f f}=\left(\beta / k_{0}\right)^{2}
$$

Planar Waveguide Model (cont.)

Approximate formulas

The effective permittivity and characteristic impedance are given by:

$$
\begin{gathered}
Z_{0}=\frac{\eta_{0}}{\sqrt{\varepsilon_{r}^{\text {eff }}}}\left[\frac{W}{h}+1.393+0.667 \ln \left(\frac{W}{h}+1.444\right)\right]^{-1} \\
\varepsilon_{r}^{\text {eff }}=\left(\frac{\varepsilon_{r}+1}{2}\right)+\left(\frac{\varepsilon_{r}-1}{2}\right) \frac{1}{\sqrt{1+12\left(\frac{h}{W}\right)}}
\end{gathered}
$$

These are accurate for $W / h>1$
D. M. Pozar, Microwave Engineering, Wiley, 1998, p. 162

The two formulas allow us to find W_{e}.

Planar Waveguide Model (cont.)

Alternative (the approach that we will use):
We keep the original permittivity, and extend the edges.

Note: This is consistent with the Hammerstad formula:

$$
f_{0}=\frac{c}{2 \sqrt{\varepsilon_{r}}(L+2 \Delta L)}
$$

(The Hammerstad formula appears to work best when used with the actual permittivity instead of the effective permittivity in the frequency formula.)

Fringing Extensions

We then have the following results:

$$
\begin{gathered}
\Delta W=h\left(\frac{\ln 4}{\pi}\right) \quad \text { (Wheeler formula) } \\
\Delta L=0.412 h\left[\frac{\varepsilon_{r}^{\text {eff }}+0.300}{\varepsilon_{r}^{\text {eff }}-0.258}\right]\left[\frac{\frac{W}{h}+0.262}{\frac{W}{h}+0.813}\right] \quad \text { (Hammerstad formula) } \\
\varepsilon_{r}^{\text {eff }}=\left(\frac{\varepsilon_{r}+1}{2}\right)+\left(\frac{\varepsilon_{r}-1}{2}\right) \frac{1}{\sqrt{1+12\left(\frac{h}{W}\right)}}
\end{gathered}
$$

Effective Loss Tangent

$$
\frac{1}{Q}=\frac{1}{Q_{d}}+\frac{1}{Q_{c}}+\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}
$$

Recall that $\frac{1}{Q_{d}}=\tan \delta \equiv l \quad$ (shorthand notation for loss tangent)

We account for all losses (and radiation) by means of an effective loss tangent:

$$
I_{e f f} \equiv(\tan \delta)_{\text {eff }}=\frac{1}{Q}
$$

$$
\varepsilon_{r l}^{e f f}=\varepsilon_{r}^{\prime}\left(1-j l_{e f f}\right)
$$

Input Impedance

$$
Z_{0 l}^{e f f}=\eta_{0} \frac{1}{\sqrt{\varepsilon_{r l}^{e f f}}}\left(\frac{h}{W_{e}}\right)
$$

$$
\varepsilon_{r l}^{e f f}=\varepsilon_{r}^{\prime}\left(1-j l_{\text {eff }}\right)
$$

Input Impedance (cont.)

From transmission-line theory we have that

$$
\begin{gathered}
Z_{i n}^{T L}=1 / Y_{i n}^{T L} \\
Y_{i n}^{T L}=j Y_{0 l}^{\text {eff }} \tan \left(k_{l}^{\text {eff }} x_{0}^{e}\right)+j Y_{0 l}^{\text {eff }} \tan \left(k_{l}^{\text {eff }}\left(L_{e}-x_{0}^{e}\right)\right)
\end{gathered}
$$

where

$$
\begin{aligned}
Y_{0 l}^{e f f} & =\frac{1}{Z_{0 l}^{e f f}} \\
k_{l}^{e f f} & =k_{0} \sqrt{\varepsilon_{r l}^{\text {eff }}}
\end{aligned}
$$

$$
l_{e f f} \equiv(\tan \delta)_{\text {eff }}=\frac{1}{Q}
$$

Note: The effective permittivity accounts for all material losses and radiation.

Probe Correction

where

$$
X_{p}=\eta_{0} \mu_{r}\left(\frac{h}{\lambda_{0}}\right)\left[\ln \left(\frac{1}{a / \lambda_{0}}\right)-\gamma-\ln \pi-\ln \sqrt{\mu_{r} \varepsilon_{r}}\right] \quad \gamma \doteq 0.57722 \quad \text { (Euler's constant) }
$$

Alternative (Edge Admittance)

$$
\varepsilon_{r l}^{\text {eff }}=\varepsilon_{r}^{\prime}\left(1-j l_{\text {eff }}^{\text {diss }}\right) \quad l_{\text {eff }}^{\text {diss }}=\frac{1}{Q_{d}}+\frac{1}{Q_{c}}
$$

Alternative (Edge Admittance) (cont.)

$G_{s}^{\text {edge }}$ models radiation (space-wave + surface-wave)

$$
\begin{aligned}
P_{\text {rad }} & =2\left(\frac{1}{2} G_{s}^{\text {edge }}|V(0)|^{2}\right) \\
& =G_{s}^{\text {edge }}\left|E_{z}(0)\right|^{2} h^{2}
\end{aligned}
$$

We assume that the two edge voltages are approximately the same in magnitude.

Also, we can express the radiated power in terms of the radiation Q as

$$
\begin{aligned}
Q_{r}=\frac{\omega_{0} U_{s}}{P_{r a d}}=2 \frac{\omega_{0} U_{E}}{P_{r a d}} & \longleftrightarrow P_{r a d}=2 \frac{\omega_{0} U_{E}}{Q_{r}} \\
& \text { where } \frac{1}{Q_{r}}=\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right)
\end{aligned}
$$

Alternative (Edge Admittance) (cont.)

The time-average stored electric energy is given by

$$
\begin{aligned}
U_{E} & =\int_{V} \frac{1}{4} \varepsilon_{0} \varepsilon_{r}^{\prime}\left|E_{z}\right|^{2} d V \\
& =W_{e} h\left(\frac{1}{4}\right) \varepsilon_{0} \varepsilon_{r}^{\prime} \int_{0}^{L_{e}}\left|E_{z}\right|^{2} d x
\end{aligned}
$$

Hence we have

$$
P_{r a d}=2 \frac{\omega_{0} U_{E}}{Q_{r}} \leadsto P_{r a d}=\left(\frac{2 \omega_{0}}{Q_{r}}\right) W_{e} h\left(\frac{1}{4}\right) \varepsilon_{0} \varepsilon_{r}^{\prime} \int_{0}^{L_{e}}\left|E_{z}\right|^{2} d x
$$

Alternative (Edge Admittance) (cont.)

The field inside the patch is approximately described by a cosine function.

Therefore, we have

$$
P_{r a d}=\frac{1}{2} \omega_{0}\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right) W_{e} h \varepsilon_{0} \varepsilon_{r}^{\prime} \int_{0}^{L_{e}}\left|E_{z}(0)\right|^{2} \cos ^{2}\left(\frac{\pi x}{L_{e}}\right) d x
$$

Evaluating the integral, we have

$$
P_{r a d}=\frac{1}{2} W_{e} h \omega_{0} \varepsilon_{0} \varepsilon_{r}^{\prime}\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right)\left(\left|E_{z}(0)\right|^{2} \frac{L_{e}}{2}\right)
$$

The radiated power is now in terms of the edge field.

Aternative (Edge Admittance) (cont.)

We then equate these two expressions for the radiated power:

$$
\begin{gathered}
P_{r a d}=G_{s}^{e d g e}\left|E_{z}(0)\right|^{2} h^{2} \\
P_{r a d}=\frac{1}{2} W_{e} h \omega_{0} \varepsilon_{0} \varepsilon_{r}^{\prime}\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right)\left(\left|E_{z}(0)\right|^{2} \frac{L_{e}}{2}\right)
\end{gathered}
$$

The result for the edge conductance is

$$
G_{s}^{e d g e}=\frac{1}{4} \varepsilon_{r}^{\prime}\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right)\left(\omega_{0} \varepsilon_{0}\right)\left(\frac{W_{e} L_{e}}{h}\right)
$$

Alternative (Edge Admittance) (cont.)

Using $\quad \omega_{0} \varepsilon_{0}=k_{0} / \eta_{0}$
the final result for the edge conductance is

$$
G_{s}^{e d g e}=\frac{1}{\eta_{0}}\left(\frac{\varepsilon_{r}^{\prime}}{4}\right)\left(\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}\right)\left(k_{0} h\right)\left(\frac{W_{e} L_{e}}{h^{2}}\right)
$$

Alternative (Edge Admittance) (cont.)

The input impedance is

$$
\begin{aligned}
Z_{\text {in }}=j X_{p}+\left\{Y_{0 l}^{\text {eff }}[\right. & {\left[\frac{G_{s}^{\text {edge }}+j Y_{0 l}^{\text {eff }} \tan \left(k_{l}^{\text {eff }} x_{0}^{e}\right)}{Y_{0 l}^{\text {eff }}+j G_{s}^{\text {edge }} \tan \left(k_{l}^{\text {eff }} x_{0}^{e}\right)}\right] } \\
& \left.+Y_{0 l}^{\text {eff }}\left[\frac{G_{s}^{\text {edge }}+j Y_{0 l}^{\text {eff }} \tan \left(k_{l}^{\text {eff }}\left(L_{e}-x_{0}^{e}\right)\right)}{Y_{0 l}^{\text {eff }}+j G_{s}^{\text {edge }} \tan \left(k_{l}^{\text {eff }}\left(L_{e}-x_{0}^{e}\right)\right)}\right]\right\}^{-1}
\end{aligned}
$$

$$
Y_{0 l}^{\text {eff }}=\frac{1}{Z_{0 l}^{\text {eff }}} \quad Z_{0 l}^{\text {eff }}=\eta_{0} \sqrt{\frac{1}{\varepsilon_{r l}^{\text {eff }}}}\left(\frac{h}{W_{e}}\right) \quad \begin{aligned}
& \varepsilon_{r l}^{\text {eff }}=\varepsilon_{r}^{\prime}\left(1-j l_{e f f}^{\text {diss }}\right) \\
& k_{l}^{\text {eff }}=k_{0} \sqrt{\varepsilon_{r l}^{\text {eff }}}
\end{aligned}
$$

$$
l_{e f f}^{d i s s}=\frac{1}{Q_{d}}+\frac{1}{Q_{c}}
$$

Note: The effective permittivity accounts for only material losses (not radiation).

Another Alternative (Edge Admittance Network)

