

Spring 2015

Prof. David R. Jackson ECE Dept.

Notes 28

In this set of notes we use the cavity model and the method of eigenfunction expansion to solve for the input impedance of the rectangular patch antenna.

$$x_0^e = x_0 + \Delta L$$
$$y_0^e = y_0 + \Delta W$$

The coordinates (x_0, y_0) are measured from the corner of the physical patch.

Assume no *z* variation (the probe current is constant in the *z* direction.)

 ΔL is from Hammerstad's formula ΔW is from Wheeler's formula

We first derive the Helmholtz equation for E_z .

$$\nabla \times \underline{H} = \underline{J}^{i} + j\omega\varepsilon_{l}^{eff}\underline{E}$$
$$\nabla \times \underline{E} = -j\omega\mu\underline{H}$$

Substituting Faradays law into Ampere's law, we have

$$-\frac{1}{j\omega\mu}\nabla\times(\nabla\times\underline{E}) = \underline{J}^{i} + j\omega\varepsilon_{l}^{eff}\underline{E}$$
$$\nabla\times(\nabla\times\underline{E}) = -j\omega\mu\underline{J}^{i} + k_{e}^{2}\underline{E}$$
$$\nabla(\nabla\cdot\underline{E}) - \nabla^{2}\underline{E} = -j\omega\mu\underline{J}^{i} + k_{e}^{2}\underline{E}$$
$$\nabla^{2}\underline{E} + k_{e}^{2}\underline{E} = j\omega\mu\underline{J}^{i}$$

Hence

$$\nabla^2 E_z + k_e^2 E_z = j\omega\mu J_z^i$$

Denote

$$\psi(x, y) = E_z(x, y)$$

Then

$$\nabla^2 \psi + k_e^2 \psi = f(x, y)$$

where

$$f(x, y) = j\omega\mu J_z^i(x, y)$$

Eigenfunction Expansion

Introduce "eigenfunctions"

$$\psi_{mn}(x,y)$$

$$\nabla^2 \psi_{mn}(x,y) = -\lambda_{mn}^2 \psi_{mn}(x,y)$$

$$\frac{\partial \psi_{mn}}{\partial n} = 0 \Big|_C \qquad -\lambda_{mn}^2 = \text{eigenvalue}$$

For rectangular patch we have, from separation of variables,

$$\psi_{mn}(x,y) = \cos\left(\frac{m\pi x}{L_e}\right) \cos\left(\frac{n\pi y}{W_e}\right)$$
$$\lambda_{mn}^2 = \left[\left(\frac{m\pi}{L_e}\right)^2 + \left(\frac{n\pi}{W_e}\right)^2\right]$$

Assume an "eigenfunction expansion"

$$\psi(x, y) = \sum_{m,n} A_{mn} \psi_{mn}(x, y)$$

This must satisfy
$$\nabla^2 \psi + k_e^2 \psi = f(x, y)$$

Hence

$$\sum_{m,n} A_{mn} \nabla^2 \psi_{mn} + k_e^2 \sum_{m,n} A_{mn} \psi_{mn} = f(x, y)$$

Using the properties of the eigenfunctions, we have

$$\sum_{m,n} A_{mn} \left(k_e^2 - \lambda_{mn}^2 \right) \psi_{mn}(x, y) = f(x, y)$$

Multiply by $\psi_{m'n'}(x, y)$ and integrate.

Note that the eigenfunctions are orthogonal, so that

$$\int_{S} \psi_{mn}(x, y) \psi_{m'n'}(x, y) dS = 0 \qquad (m, n) \neq (m', n')$$

Denote

$$\langle \psi_{mn}, \psi_{mn} \rangle = \int_{S} \psi_{mn}^2(x, y) dS$$

Note: Here the bracket notation denote inner product, not reaction.

We then have

$$A_{mn}\left(k_{e}^{2}-\lambda_{mn}^{2}
ight) < \psi_{mn}, \psi_{mn} > = < f, \psi_{mn} >$$

Hence, we have $A_{mn} = \frac{\langle f, \psi_{mn} \rangle}{\langle \psi_{mn}, \psi_{mn} \rangle} \left(\frac{1}{k_e^2 - \lambda_{mn}^2}\right)$

For the patch we then have $f(x, y) = j\omega\mu J_z^i(x, y)$

$$A_{mn} = j\omega\mu \left(\frac{\langle J_z^i, \psi_{mn} \rangle}{\langle \psi_{mn}, \psi_{mn} \rangle}\right) \left(\frac{1}{k_e^2 - \lambda_{mn}^2}\right)$$

The field inside the patch cavity is then given by

$$E_z(x,y) = \sum_{m,n} A_{mn} \psi_{mn}(x,y)$$

To calculate the input impedance, we first calculate the complex power going into the patch as

$$P_{in} = -\frac{1}{2} \int_{V} E_{z}(x, y) J_{z}^{i^{*}} dV$$

= $-\frac{1}{2} h \int_{S} E_{z}(x, y) J_{z}^{i^{*}} dS$
= $-\frac{1}{2} h \int_{S} \sum_{m,n} A_{mn} \psi_{mn} J_{z}^{i^{*}} dS$

or

$$P_{in} = -\frac{1}{2}h\sum_{m,n} A_{mn} < \psi_{mn}, J_{z}^{i*} >$$

$$= -\frac{1}{2}h\sum_{m,n} j\omega\mu \left(\frac{<\psi_{mn}, J_{z}^{i}>}{<\psi_{mn}, \psi_{mn}>}\right) \left(\frac{1}{k_{e}^{2} - \lambda_{mn}^{2}}\right) < \psi_{mn}, J_{z}^{i*} >$$

$$= -\frac{1}{2}h\sum_{m,n} j\omega\mu \left(\frac{|<\psi_{mn}, J_{z}^{i}>|^{2}}{<\psi_{mn}, \psi_{mn}>}\right) \left(\frac{1}{k_{e}^{2} - \lambda_{mn}^{2}}\right)$$

Also,
$$P_{in} = \frac{1}{2} Z_{in} \left| I_{in} \right|^2$$

so
$$Z_{in} = \frac{2P_{in}}{\left|I_{in}\right|^2}$$

Hence we have

$$Z_{in} = -j\omega\mu h \frac{1}{|I_{in}|^2} \sum_{m,n} \left(\frac{|\langle \psi_{mn}, J_z^i \rangle|^2}{\langle \psi_{mn}, \psi_{mn} \rangle} \right) \left(\frac{1}{k_e^2 - \lambda_{mn}^2} \right)$$

where
$$\sum_{m,n} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}$$

Rectangular patch:

$$\psi_{mn} = \cos\left(\frac{m\pi x}{L_e}\right) \cos\left(\frac{n\pi y}{W_e}\right)$$
$$\lambda_{mn}^2 = \left(\frac{m\pi}{L_e}\right)^2 + \left(\frac{n\pi}{W_e}\right)^2$$
$$k_e = k_0 \sqrt{\varepsilon_{rl}^{eff}}$$

where
$$\mathcal{E}_{rl}^{eff} = \mathcal{E}_{r}' \left(1 - j l_{eff} \right)$$

We need:

$$\langle \Psi_{mn}, \Psi_{mn} \rangle = \int_{0}^{L_{e}} \cos^{2} \left(\frac{m\pi x}{L_{e}} \right) dx \int_{0}^{W_{e}} \cos^{2} \left(\frac{n\pi y}{W_{e}} \right) dy$$

SO

$$\langle \psi_{mn}, \psi_{mn} \rangle = \left(\frac{W_e}{2}\right) \left(\frac{L_e}{2}\right) (1 + \delta_{m0}) (1 + \delta_{n0})$$

$$\delta_{m0} = \begin{cases} 1, \ m = 0\\ 0, \ m \neq 0 \end{cases}$$

To calculate $\langle \Psi_{mn}, J_z^i \rangle$, assume a strip model as shown below.

Maxwell Current

For a "Maxwell" strip current assumption, we have:

$$J_{sz} = \frac{I_{in}}{\pi \sqrt{\left(\frac{W_p}{2}\right)^2 - \left(y - y_0^e\right)^2}}, \quad y \in \left(y_0^e - \frac{W_p}{2}, y_0^e + \frac{W_p}{2}\right)$$

$$W_p = 4a_p$$

Note: The total probe current is I_{in} .

Uniform Current

For a uniform strip current assumption, we have:

$$J_{sz} = \frac{I_{in}}{W_p}, \quad y \in \left(y_0^e - \frac{W_p}{2}, y_0^e + \frac{W_p}{2}\right)$$

$$W_p = a_p e^{\frac{3}{2}} \doteq 4.482 a_p$$

Note: The total probe current is I_{in} .

Uniform Model

Assume uniform strip current model:

Uniform Model (cont.)

Hence

$$\left\langle \psi_{mn}, J_{z}^{i} \right\rangle = I_{in} \cos\left(\frac{m\pi x_{0}^{e}}{L_{e}}\right) \cos\left(\frac{n\pi y_{0}^{e}}{W_{e}}\right) \operatorname{sinc}\left(\frac{n\pi W_{p}}{2W_{e}}\right)$$

Note: It is the sinc
$$\left(\frac{n\pi W_p}{2W_e}\right)$$
 term that causes the series for Z_{in} to converge.

Note: We cannot assume a probe of zero radius, or else the series will not converge – the input reactance will be infinite.

Summary

$$Z_{in} = -j\omega\mu h \frac{1}{|I_{in}|^2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \left(\frac{|\langle \psi_{mn}, J_z^i \rangle|^2}{\langle \psi_{mn}, \psi_{mn} \rangle} \right) \left(\frac{1}{k_e^2 - \lambda_{mn}^2} \right)$$

where

$$\langle \psi_{mn}, \psi_{mn} \rangle = \left(\frac{W_e}{2}\right) \left(\frac{L_e}{2}\right) (1 + \delta_{m0}) (1 + \delta_{n0})$$

$$\left\langle \psi_{mn}, J_{z}^{i} \right\rangle = I_{in} \cos\left(\frac{m\pi x_{0}^{e}}{L_{e}}\right) \cos\left(\frac{n\pi y_{0}^{e}}{W_{e}}\right) \operatorname{sinc}\left(\frac{n\pi W_{p}}{2W_{e}}\right)$$

$$W_p = a_p e^{\frac{3}{2}} \doteq 4.482 a_p$$

 $\lambda_{mn} = \sqrt{\left(\frac{m\pi}{L_e}\right)^2 + \left(\frac{n\pi}{W_e}\right)^2}$

$$k_e = k_0 \sqrt{\varepsilon_{rl}^{eff}} \qquad \varepsilon_{rl}^{eff} = \varepsilon_r' \left(1 - j l_{eff} \right) \qquad l_{eff} = 1 / Q$$

Probe Inductance

$$Z_{in} = -j\omega\mu h \frac{1}{|I_{in}|^2} \sum_{m,n} \left(\frac{|\langle \psi_{mn}, J_z^i \rangle|^2}{\langle \psi_{mn}, \psi_{mn} \rangle} \right) \left(\frac{1}{k_e^2 - \lambda_{mn}^2} \right)$$

Note that

(1,0) = term that corresponds to the dominant patch mode current (impedance of RLC circuit).

Hence

$$jX_{p} = -j\omega\mu h \frac{1}{\left|I_{in}\right|^{2}} \sum_{\substack{(m,n)\\\neq(1,0)}} \left(\frac{\left|\left\langle\psi_{mn},J_{z}^{i}\right\rangle\right|^{2}}{\left\langle\psi_{mn},\psi_{mn}\right\rangle}\right) \left(\frac{1}{k_{e}^{2} - \lambda_{mn}^{2}}\right)$$

RLC Model

We can write

$$Z_{in} = \sum_{m,n} Z_{in}^{m,n}$$

where

$$Z_{in}^{m,n} = -j\omega \left(\frac{P_{mn}}{k_e^2 - \lambda_{mn}^2}\right)$$

$$P_{mn} = \mu h \frac{1}{\left|I_{in}\right|^{2}} \frac{\left|\left\langle \psi_{mn}, J_{z}^{i}\right\rangle\right|^{2}}{\left\langle \psi_{mn}, \psi_{mn}\right\rangle}$$

(These coefficients are not a function of frequency or the current.)

Eigenvalue equation:
$$\nabla^2 \psi_{mn} + \lambda_{mn}^2 \psi_{mn} = 0$$

Assume an ideal *resonator* formed by a hypothetical lossless substrate ε_r' .

Fields allowed at *resonance frequencies*: $k = k_{mn} = k_0^{mn} \sqrt{\varepsilon'_r}$

Note: *k* is real here.

 $k \equiv \omega \sqrt{\mu \varepsilon_0 \varepsilon_r'}$

 k_{mn} = wavenumber of resonant patch mode (m, n) for a lossless substrate

Helmholtz equation:
$$\nabla^2 \psi_{mn} + k_{mn}^2 \psi_{mn} = 0$$

Comparing, we have the conclusion that

$$\lambda_{mn} = k_{mn}$$

This is the physical interpretation of the eigenvalues.

We can then write

$$Z_{in}^{m,n} = -j\omega \left(\frac{P_{mn}}{k_e^2 - k_{mn}^2} \right)$$
$$= -j\omega \left(\frac{P_{mn}}{k^2 \left(1 - jl_{eff} \right) - k_{mn}^2} \right)$$
$$= -j\omega \left(\frac{P_{mn}}{\left(k^2 - k_{mn}^2 \right) - jk^2 l_{eff}} \right)$$
$$= \omega \frac{P_{mn}}{k^2 l_{eff} + j \left(k^2 - k_{mn}^2 \right)}$$

Note :

$$k_e^2 = \omega^2 \mu \varepsilon_l^{eff}$$
$$= \omega^2 \mu \varepsilon' (1 - j l_{eff})$$
$$= k^2 (1 - j l_{eff})$$

Next, use:

Also, define

$$R_{mn} \equiv \left(\frac{P_{mn}}{k_{mn}^2 l_{eff}}\right) \omega_{mn}$$
$$\Rightarrow \left(\frac{P_{mn}}{k_{mn}^2 l_{eff}}\right) \omega = \left(\frac{P_{mn}}{k_{mn}^2 l_{eff}}\right) \omega_{mn} \left(\frac{\omega}{\omega_{mn}}\right) = R_{mn} f_{rmn}$$

Then

$$Z_{in}^{m,n} = R_{mn} \left(\frac{f_{rmn}}{f_{rmn}^2 + jQ(f_{rmn}^2 - 1)} \right)$$

or

For
$$f_{rmn}^2 \approx 1$$
 , we have

$$Z_{in}^{m,n} \approx \frac{R_{mn}}{1 + jQ\left(f_{rmn} - \frac{1}{f_{rmn}}\right)}$$

(RLC equation)

This justifies the RLC model near resonance.

(0,0) Mode

Note that for the (0,0) mode
$$\mathcal{O}_{00} = 0$$
 Recall : $\lambda_{mn} = k_{mn} = \sqrt{\left(\frac{m\pi}{L_e}\right)^2 + \left(\frac{n\pi}{W_e}\right)^2}$

$$Z_{in}^{m,n} = \omega \frac{P_{mn}}{k^2 l_{eff} + j(k^2 - k_{mn}^2)} \qquad \Longrightarrow \qquad Z_{in}^{0,0} = \omega \frac{P_{00}}{j(k^2 - jk^2 l_{eff})}$$

or
$$Z_{in}^{0,0} \approx \frac{1}{j\omega \left(\frac{\mu \varepsilon_0 \varepsilon_r'}{P_{00}}\right)}$$
 (Assume $l_{eff} = l_{eff}^{0,0} \ll 1$)

Also, we have

$$P_{mn} = \mu h \frac{1}{|I_{in}|^2} \frac{\left| \left\langle \psi_{mn}, J_z^i \right\rangle \right|^2}{\left\langle \psi_{mn}, \psi_{mn} \right\rangle} \quad \Longrightarrow \quad P_{00} = \mu h \frac{1}{|I_{in}|^2} \frac{|I_{in}|^2}{L_e W_e} = \frac{\mu h}{L_e W_e}$$

Hence

or

$$Z_{in}^{0,0} \approx \frac{1}{j\omega \left(\varepsilon_0 \varepsilon_r' \frac{L_e W_e}{h}\right)} = \frac{1}{j\omega C}$$

As expected, the (0,0) mode acts as a parallel-plate capacitor.

For any other *nonresonant* mode $(m,n) \neq (1,0)$ or (0,0)

Circuit model:

Note: This circuit model is accurate as long as we are near the resonance of the (1,0) circuit.

Lumping all of the nonresonant circuits together, we have:

This gives us the CAD model for the patch.

In this appendix we derive the equivalent radius approximation for a flat strip.

Start by considering a conductor of arbitrary cross section.

We wish to find the effective radius *a* of the round wire that best models the object.

Approach: Equate complex power being radiated by the two objects.

From notes 4:

$$E_z = -\eta k \left(\frac{1}{4}\right) J_0(ka) H_0^{(2)}(k\rho), \ \rho \ge a$$

$$P_{rad} = -\frac{1}{2} \int_{C_0} E_z J_{sz}^* dl = -\frac{1}{2} \int_0^{2\pi} E_z J_{sz}^* a \, d\phi = -\frac{1}{2} E_z J_{sz}^* a \left(2\pi\right)$$
$$= -\frac{1}{2} \left(-\eta k \left(\frac{1}{4}\right) J_0(ka) H_0^{(2)}(ka)\right) \left(\frac{1}{2\pi a}\right)^* a \left(2\pi\right)$$

$$P_{rad} = -\frac{1}{2} \left(-\eta k \left(\frac{1}{4} \right) J_0(ka) H_0^{(2)}(ka) \right) \left(\frac{1}{2\pi a} \right)^* a \left(2\pi \right)$$

Use $\eta k = \omega \mu$

$$P_{rad} = \frac{1}{8} \omega \mu J_0(ka) H_0^{(2)}(ka)$$

Assume that the radius is small compared with a wavelength.

$$P_{rad} \approx -j\frac{1}{8}\omega\mu Y_0(ka)$$

Next, use

$$Y_0(x) \sim \frac{2}{\pi} \left[\ln\left(\frac{x}{2}\right) + \gamma \right], \quad \gamma = 0.5772156$$

We then have

$$P_{rad} \approx -j\frac{1}{8}\omega\mu\left(\frac{2}{\pi}\left[\ln\left(\frac{ka}{2}\right) + \gamma\right]\right)$$

or

$$P_{rad} \approx -j \frac{1}{4\pi} \omega \mu \left[\ln \left(\frac{ka}{2} \right) + \gamma \right]$$

Next, we consider the arbitrary object.

Arbitrary object:

 \mathcal{E}, μ

Assume :
$$I_0 = 1 \text{ A}$$

$$P_{rad} = -\frac{1}{2} \int_{C} J_{sz}^{*}(l) E_{z}(l) dl$$

where

$$E_{z}(l) = \int_{C} J_{sz}(l') \left[-\eta k \left(\frac{1}{4}\right) H_{0}^{(2)}(kR) \right] dl' \qquad R = \left| \underline{r} - \underline{r'} \right|$$

$$P_{rad} = -\frac{1}{2} \int_{C} J_{sz}^{*}\left(l\right) \int_{C} J_{sz}\left(l'\right) \left[-\eta k \left(\frac{1}{4}\right) H_{0}^{(2)}(kR)\right] dl' dl$$

Denote $J_{sz}(l) = f(l)$ Assume : $I_0 = 1$ A

$$P_{rad} = \frac{1}{8} \omega \mu \int_{CC} f(l') f^*(l) H_0^{(2)}(kR) dl' dl$$

SO

$$P_{rad} \approx \frac{1}{8} \omega \mu \iint_{CC} f(l') f^*(l) \left(-j \frac{2}{\pi} \left[\ln\left(\frac{kR}{2}\right) + \gamma \right] \right) dl' dl$$

$$P_{rad} \approx \frac{1}{8} \omega \mu \iint_{CC} f(l') f^*(l) \left(-j \frac{2}{\pi} \left[\ln \left(\frac{kR}{2} \right) + \gamma \right] \right) dl' dl$$

Note that

$$\int_{C} f(l') dl' = 1 \quad (1A \text{ on object})$$

$$\int_{C} f(l) dl = 1 \quad (1A \text{ on object})$$

$$\int_{C} f(l) dl = 1 \quad (1A \text{ on object})$$

so that

$$P_{rad} \approx \frac{1}{8} \omega \mu \iint_{CC} f(l') f^*(l) \left(-j \frac{2}{\pi} \left[\ln\left(\frac{kR}{2}\right) \right] \right) dl' dl - j\gamma \left(\frac{1}{4\pi} \omega \mu\right)$$

Equate the two complex powers:

$$P_{rad} \approx -j \frac{1}{4\pi} \omega \mu \left[\ln \left(\frac{ka}{2} \right) + \gamma \right]$$

$$P_{rad} \approx -j\frac{1}{4\pi}\omega\mu \iint_{CC} f(l') f^*(l) \ln\left(\frac{kR}{2}\right) dl' dl - j\gamma\left(\frac{1}{4\pi}\omega\mu\right)$$

$$-j\frac{1}{4\pi}\omega\mu\left[\ln\left(\frac{ka}{2}\right)+\gamma\right] = -j\frac{1}{4\pi}\omega\mu\int_{CC}f(l')f^*(l)\ln\left(\frac{kR}{2}\right)dl'dl - j\gamma\left(\frac{1}{4\pi}\omega\mu\right)$$

or

$$-j\frac{1}{4\pi}\omega\mu\ln\left(\frac{ka}{2}\right) = -j\frac{1}{4\pi}\omega\mu\int_{CC}f(l')f^*(l)\ln\left(\frac{kR}{2}\right)dl'dl$$

$$-j\frac{1}{4\pi}\omega\mu\ln\left(\frac{ka}{2}\right) = -j\frac{1}{4\pi}\omega\mu\int_{CC}f(l')f^*(l)\ln\left(\frac{kR}{2}\right)dl'dl$$

or

$$\ln\left(\frac{ka}{2}\right) = \iint_{CC} f(l') f^*(l) \ln\left(\frac{kR}{2}\right) dl' dl$$

or

$$\ln(k) + \ln a - \ln 2 = \iint_{CC} f(l') f^*(l) (\ln k + \ln R - \ln 2) dl' dl$$

or

$$\ln a = \iint_{CC} f(l') f^*(l) \ln R \, dl' \, dl$$

The general result (applicable to any arbitrary object) is thus

$$\ln a = \iint_{C C} f(l') f^*(l) \ln R(l,l') dl' dl$$

We next evaluate this for a flat strip.

$$J_{sz}\left(x\right) = f\left(x\right)$$

$$\ln a = \int_{-w/2}^{w/2} \int_{-w/2}^{w/2} f(x') f^*(x) \ln |x - x'| dx' dx$$

$$\ln a = \frac{1}{w^2} \int_{-w/2}^{w/2} \int_{-w/2}^{w/2} \ln |x - x'| dx' dx$$

Use

$$s = x / w$$
$$t = x' / w$$

We then have

$$\ln a = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln \left(w | s - t | \right) dt \, ds$$

$$\ln a = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln \left(w | s - t | \right) dt \, ds$$

Therefore, we have

$$\ln a = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln \left(\left| s - t \right| \right) dt \, ds + \ln w \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} dt \, ds$$

or

$$\ln a = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln \left(\left| s - t \right| \right) dt \, ds + \ln w$$

$$\ln a = \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln(|s-t|) dt \, ds + \ln w$$

Define

$$I_2 \equiv \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln(|s-t|) dt \, ds$$

We then have

$$\ln a = I_2 + \ln w$$

or

$$a = e^{I_2} w$$

or

$$w = e^{-I_2}a$$

We have

$$I_2 \equiv \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \ln(|s-t|) dt \, ds = -\frac{3}{2}$$

We then have

$$w = e^{3/2}a$$

Maxwell current model:

$$J_{sz}(x) = \frac{1/\pi}{\sqrt{\left(\frac{w}{2}\right)^2 - x^2}}$$

(This corresponds to 1A.)

$$\ln a = \frac{1}{\pi^2} \int_{-w/2 - w/2}^{w/2} \int_{\sqrt{\left(\frac{w}{2}\right)^2 - x^2}}^{w/2} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - x^2}} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - x'^2}} \ln |x - x'| dx' dx$$

Use

$$s = x / w$$
$$t = x' / w$$

$$\ln a = \frac{w^2}{\pi^2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - \left(ws\right)^2}} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - \left(wt\right)^2}} \ln\left(w|s-t|\right) ds dt$$

$$\ln a = \frac{w^2}{\pi^2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - \left(ws\right)^2}} \frac{1}{\sqrt{\left(\frac{w}{2}\right)^2 - \left(wt\right)^2}} \ln\left(w|s-t|\right) ds dt$$

This (separable) double integral equals 1.

$$\ln a = \ln w + \frac{1}{\pi^2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - s^2}} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - t^2}} \ln\left(\left|s - t\right|\right) ds dt$$

Define

$$I_{2} \equiv \frac{1}{\pi^{2}} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2} - s^{2}}} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2} - t^{2}}} \ln\left(\left|s - t\right|\right) ds dt$$

We then have

$$\ln a = I_2 + \ln w$$

or

or

$$a = e^{I_2} w$$

$$w = e^{-I_2}a$$

We have

$$I_2 \equiv \frac{1}{\pi^2} \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - s^2}} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^2 - t^2}} \ln\left(\left|s - t\right|\right) ds dt = -\ln 4$$

We then have

$$w = e^{-(-\ln 4)}a$$

or

$$w = 4a$$