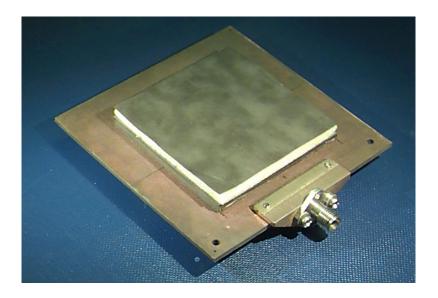


Spring 2015

Prof. David R. Jackson ECE Dept.



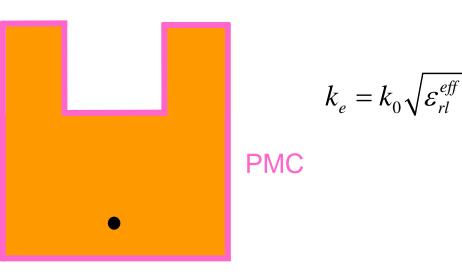
Notes 31

In this set of notes we overview the segmentation method for obtaining the input impedance of an arbitrary shaped patch.

This is an extension of the cavity model.

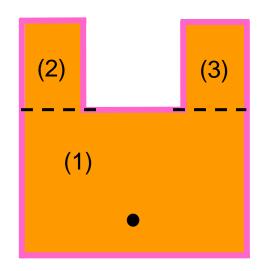
Segmentation Method

The perimeter has been extend to account for fringing.

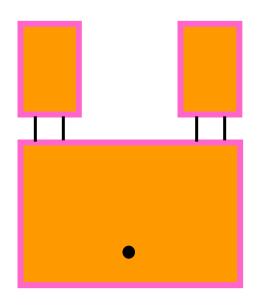


(arbitrary shaped patch)

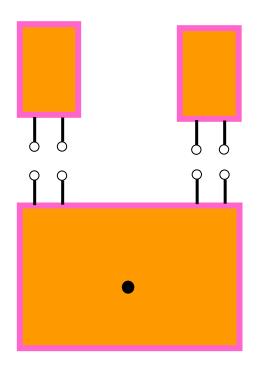
Note: The effective complex wavenumber may be determined iteratively – once the field is known inside the patch, the stored energy and the radiated power may be computed, and from this the Q may be determined.



The patch is divided into a number of rectangular-shaped patches.

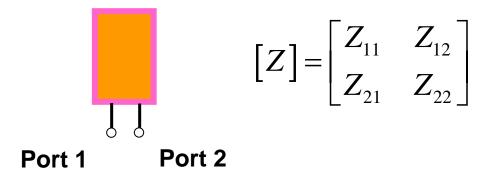


Along the edges where the rectangular patches connect, we introduce ports. The ports connect the patches together.

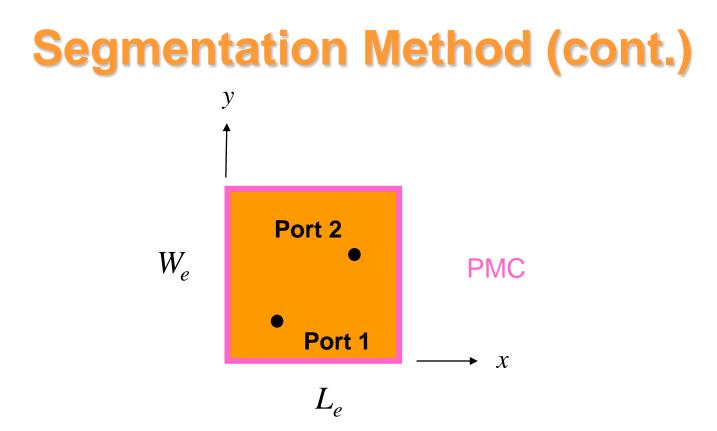


For each rectangular patch, we calculate the Z matrix for the ports that connect to it.

To illustrate, consider one patch:



We can calculate Z_{mn} by using the cavity model.

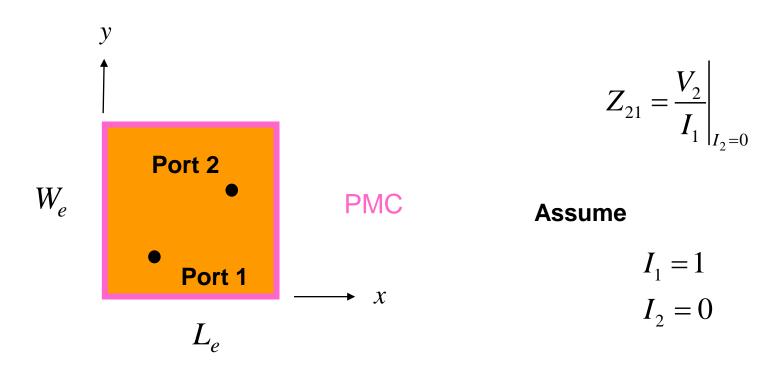


This figure shows a general two-port system for a rectangular patch.

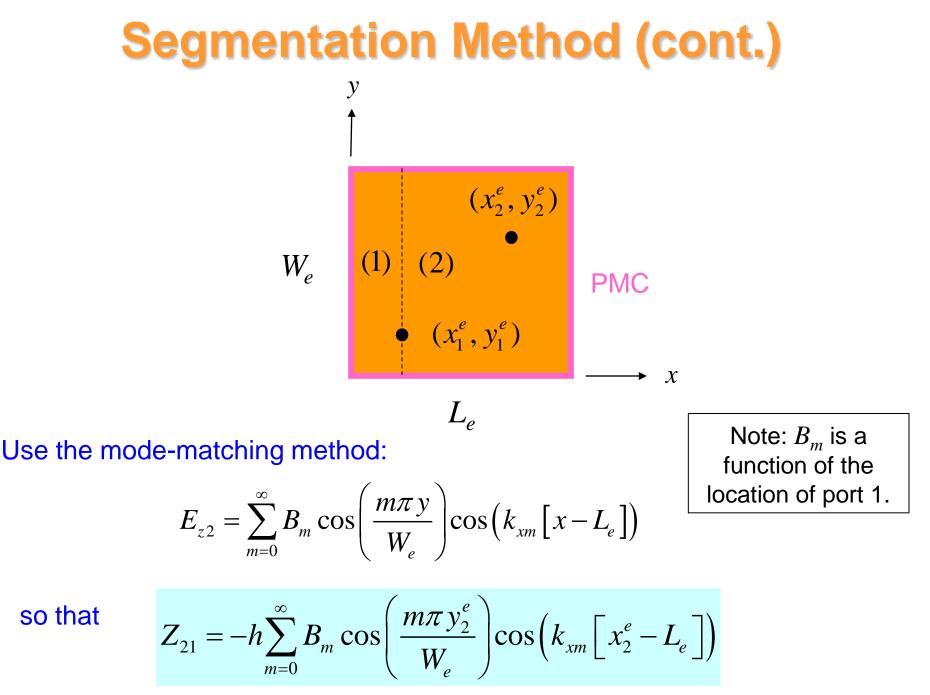
Port 1:
$$(x_1^e, y_1^e)$$
 $Z_{11} = \frac{V_1}{I_1}\Big|_{I_2=0}$
Port 2: (x_2^e, y_2^e) $Z_{22} = \frac{V_2}{I_2}\Big|_{I_1=0}$

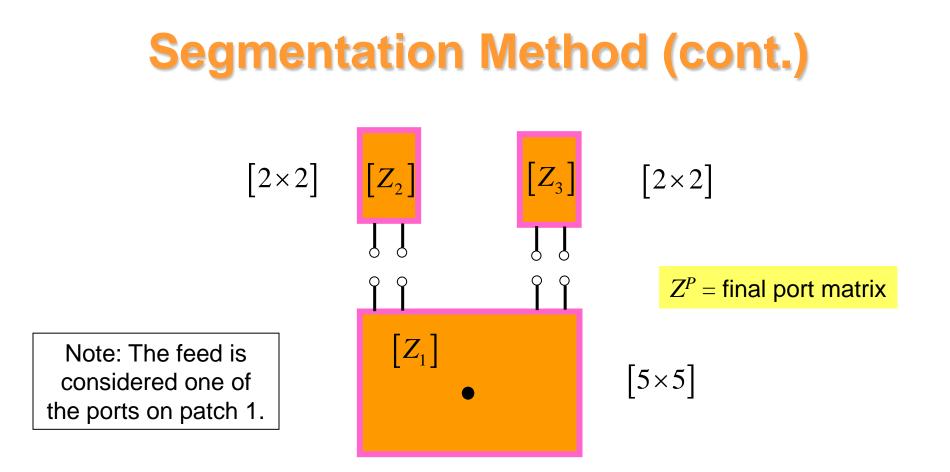
(the input impedance at port 1)

(the input impedance at port 2)



$$Z_{21} = -hE_z\left(x_2^e, y_2^e\right)$$

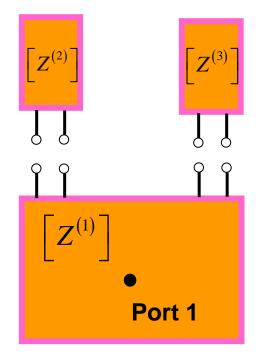




Once the Z matrices of all the patches have been computed, an overall Z matrix of the entire system Z^P is calculated, by connecting the individual Z matrices and using circuit theory.

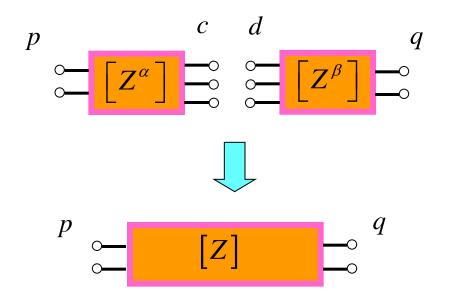
If there is a single feed, then Z^P is a 1×1 matrix:

$$\left[Z^{P}\right] = \left[Z_{11}^{P}\right]_{1\times 1}$$



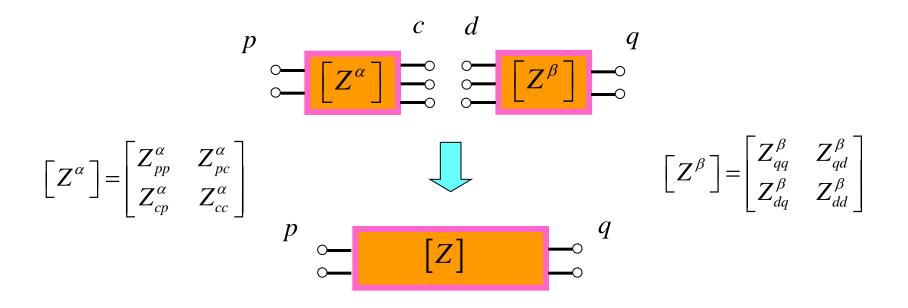
The input impedance is then given by

$$Z_{in} = Z_{11}^P$$



We next show how to combine two Z matrices into a single overall Z^{P} matrix.

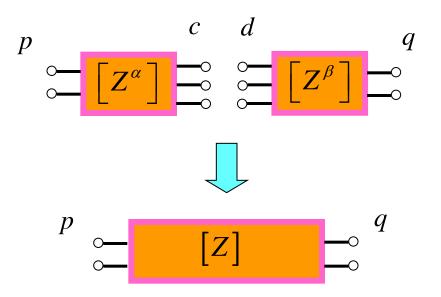
The ports p and q are the external ports, while c and d represent the internal (connected) ports.



 $\begin{bmatrix} V_{p} \end{bmatrix} = \begin{bmatrix} Z_{pp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_{p} \end{bmatrix} + \begin{bmatrix} Z_{pc}^{\alpha} \end{bmatrix} \begin{bmatrix} I_{c} \end{bmatrix}$ (1) $\begin{bmatrix} V_{q} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\beta} \end{bmatrix} \begin{bmatrix} I_{q} \end{bmatrix} + \begin{bmatrix} Z_{qd}^{\beta} \end{bmatrix} \begin{bmatrix} I_{d} \end{bmatrix}$ (2)

 $\begin{bmatrix} V_c \end{bmatrix} = \begin{bmatrix} Z_{cc}^{\alpha} \end{bmatrix} \begin{bmatrix} I_c \end{bmatrix} + \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} \quad (3)$

 $\begin{bmatrix} V_d \end{bmatrix} = \begin{bmatrix} Z_{dd}^{\beta} \end{bmatrix} \begin{bmatrix} I_d \end{bmatrix} + \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix}$ (4)



Also, from Kirchhoff's laws we have

$$\begin{bmatrix} I_c \end{bmatrix} = -\begin{bmatrix} I_d \end{bmatrix} \quad (5)$$
$$\begin{bmatrix} V_c \end{bmatrix} = \begin{bmatrix} V_d \end{bmatrix} \quad (6)$$

Substituting (3) and (4) into (6) and using (5) yields

$$\left[Z_{cc}^{\alpha}\right]\left[I_{c}\right] + \left[Z_{cp}^{\alpha}\right]\left[I_{p}\right] = \left[Z_{dd}^{\beta}\right]\left[-I_{c}\right] + \left[Z_{dq}^{\beta}\right]\left[I_{q}\right]$$

Hence

$$\left[Z_{cc}^{\alpha} + Z_{dd}^{\beta}\right] \left[I_{c}\right] = -\left[Z_{cp}^{\alpha}\right] \left[I_{p}\right] + \left[Z_{dq}^{\beta}\right] \left[I_{q}\right]$$

so that

$$\begin{bmatrix} I_c \end{bmatrix} = \begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \left(- \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} + \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix} \right)$$
(7)

Next, insert (7) into (1):

$$\begin{bmatrix} V_p \end{bmatrix} = \begin{bmatrix} Z_{pp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} + \begin{bmatrix} Z_{pc}^{\alpha} \end{bmatrix} \left(\begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \left(- \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} + \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix} \right) \right)$$
(8)

Similarly, from (2) we have

$$\begin{bmatrix} V_q \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\beta} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix} + \begin{bmatrix} Z_{qd}^{\beta} \end{bmatrix} \begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \left(- \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix} + \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} \right)$$
(9)

From the definition of the Z matrix of the overall system, we can also write

$$\begin{bmatrix} V_p \end{bmatrix} = \begin{bmatrix} Z_{pp} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} + \begin{bmatrix} Z_{pq} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix}$$
(10)
$$\begin{bmatrix} V_q \end{bmatrix} = \begin{bmatrix} Z_{qp} \end{bmatrix} \begin{bmatrix} I_p \end{bmatrix} + \begin{bmatrix} Z_{qq} \end{bmatrix} \begin{bmatrix} I_q \end{bmatrix}$$
(11)

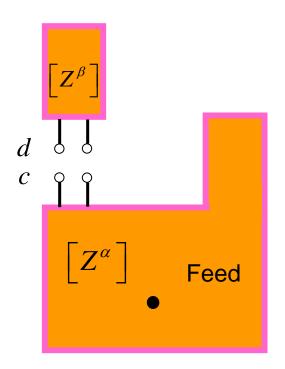
Comparing (8) and (9) with (10) and (11), we have the following results:

$$\begin{bmatrix} Z_{pp} \end{bmatrix} = \begin{bmatrix} Z_{pp}^{\alpha} \end{bmatrix} - \begin{bmatrix} Z_{pc}^{\alpha} \end{bmatrix} \left(\begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \right)$$
$$\begin{bmatrix} Z_{pq} \end{bmatrix} = \begin{bmatrix} Z_{pc}^{\alpha} \end{bmatrix} \left(\begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \right)$$
$$\begin{bmatrix} Z_{qp} \end{bmatrix} = \begin{bmatrix} Z_{qd}^{\beta} \end{bmatrix} \left(\begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \begin{bmatrix} Z_{cp}^{\alpha} \end{bmatrix} \right)$$
$$\begin{bmatrix} Z_{qq} \end{bmatrix} = \begin{bmatrix} Z_{qq}^{\beta} \end{bmatrix} - \begin{bmatrix} Z_{qd}^{\beta} \end{bmatrix} \left(\begin{bmatrix} Z_{cc}^{\alpha} + Z_{dd}^{\beta} \end{bmatrix}^{-1} \begin{bmatrix} Z_{dq}^{\beta} \end{bmatrix} \right)$$

After the final patch is connected, we are left with a final port matrix Z^{P} .

For a single feed, we have

$$\left[Z^{P}\right] = \left[Z_{11}^{P}\right]_{1\times 1}$$



Desegmentation Method

This is a variation of the segmentation method, in which we have a rectangular patch shape in which a set of smaller rectangular patches have been removed.

