ECE 6345

Spring 2015

Prof. David R. Jackson ECE Dept.

Notes 3

This set of notes discusses the Q of a patch, and its different components, as well as the radiation efficiency of the patch.

- Define Q and its components: $Q_{d}, Q_{c}, Q_{s p}, Q_{s w}$
- Calculate $Q_{d}, Q_{c}, Q_{s p}, Q_{s w}$
- Calculate the radiation efficiency

Q of the Patch

The patch is allowed to have an arbitrary shape.

$$
Q=\omega_{0} \frac{U_{S}}{P_{D}^{a v e}} \quad \text { so } \quad \frac{1}{Q}=\frac{P_{D}^{a v e}}{\omega_{0} U_{S}}
$$

Note: Here ω_{0} denotes the real part of the complex resonance frequency (instead of $\omega_{0}{ }^{\prime}$).

$$
P_{D}^{a v e}=P_{D}^{s p}+P_{D}^{s w}+P_{D}^{c}+P_{D}^{d}
$$

Q of the Patch (cont.)

Hence

$$
\frac{1}{Q}=\frac{P_{D}^{s p}}{\omega_{0} U_{s}}+\frac{P_{D}^{s w}}{\omega_{0} U_{s}}+\frac{P_{D}^{c}}{\omega_{0} U_{s}}+\frac{P_{D}^{d}}{\omega_{0} U_{S}}
$$

$$
\text { or } \quad \frac{1}{Q}=\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}+\frac{1}{Q_{c}}+\frac{1}{Q_{d}}
$$

Note: Combining Q terms is like combining resistors in parallel.
Note: A smaller Q is a more dominant one!

Calculation of $\boldsymbol{Q}_{\boldsymbol{d}}$

$$
\begin{aligned}
U_{S} & =\left\langle U_{S}\right\rangle=\left\langle U_{E}\right\rangle+\left\langle U_{H}\right\rangle=2\left\langle U_{E}\right\rangle \\
& =2 \int_{V} \frac{1}{4} \varepsilon^{\prime}|\underline{E}|^{2} d V \quad \begin{array}{l}
\text { (We have equal time-average } \\
\text { stored energies at resonance.) }
\end{array} \\
& =\frac{1}{2} \varepsilon^{\prime} h \int_{S}|\underline{E}|^{2} d S
\end{aligned}
$$

$$
\begin{aligned}
& P_{D}^{d}=\int_{V} \frac{1}{2}\left(\omega_{0} \varepsilon^{\prime \prime}\right)|\underline{E}|^{2} d V \\
&=\frac{1}{2} \omega_{0} \varepsilon^{\prime \prime} h \int_{S}|\underline{E}|^{2} d S
\end{aligned}
$$

Calculation of \boldsymbol{Q}_{d} (cont.)

Hence

Therefore

$$
Q^{d}=\omega_{0} \frac{\frac{1}{2} \varepsilon^{\prime} h \int_{S}|\underline{E}|^{2} d S}{\frac{1}{2} \omega_{0} \varepsilon^{\prime \prime} h \int_{S}|\underline{E}|^{2} d S}=\frac{\varepsilon^{\prime}}{\varepsilon^{\prime \prime}}
$$

$$
Q^{d}=\frac{1}{\tan \delta} \quad \begin{gathered}
\text { The dielectric } Q \text { factor is } \\
\text { independent of substrate thickness. }
\end{gathered}
$$

Calculation of $\boldsymbol{Q}_{\mathrm{c}}$

$$
P_{D}^{c}=\int_{S_{p}} \frac{1}{2} R_{s}^{p}|\underline{H}|^{2} d S+\int_{S_{c}} \frac{1}{2} R_{s}^{G}|\underline{H}|^{2} d S
$$

Hence

$$
\begin{aligned}
P_{D}^{a v e} & =\frac{1}{2}\left(R_{s}^{P}+R_{s}^{G}\right) \int_{S}|\underline{H}|^{2} d S \\
& =R_{s}^{a v e} \int_{S}|\underline{H}|^{2} d S
\end{aligned}
$$

Calculation of Q_{c} (cont.)

For the stored energy,

$$
U_{S}=\left\langle U_{S}\right\rangle=\left\langle U_{E}\right\rangle+\left\langle U_{H}\right\rangle=2\left\langle U_{H}\right\rangle
$$

where

$$
\begin{aligned}
\left\langle U_{H}\right\rangle & =\int_{V} \frac{1}{4} \mu|\underline{H}|^{2} d V \\
& =\frac{1}{4} \mu_{0} \mu_{r} h \int_{S}|\underline{H}|^{2} d S
\end{aligned}
$$

Calculation of $\boldsymbol{Q}_{\mathrm{c}}$ (cont.)

Hence,

$$
Q_{c}=\omega_{0} \frac{2\left(\frac{1}{4} \mu_{0} \mu_{r} h \int_{S}|\underline{H}|^{2} d S\right)}{R_{s}^{\text {ave }} \int_{S}|\underline{H}|^{2} d S}
$$

Use

$$
\omega_{0}=\frac{k_{0}}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

SO

$$
Q_{c}=\frac{\frac{1}{2} \mu_{0} \mu_{r}\left(k_{0} h\right)}{R_{s}^{a v e} \sqrt{\mu_{0} \varepsilon_{0}}}
$$

Calculation of $\boldsymbol{Q}_{\mathrm{c}}$ (cont.)

Hence, we have

$$
Q_{c}=\left(\frac{\eta_{0}}{2}\right) \mu_{r}\left[\frac{\left(k_{0} h\right)}{R_{s}^{\text {ave }}}\right]
$$

The conducting Q factor becomes more important as the substrate gets thinner.

Calculation of $\boldsymbol{Q}_{\text {s }}$

Rectangular Patch: (The derivation is given later.)

$$
Q_{s p} \approx \frac{3}{16}\left(\frac{\varepsilon_{r}}{p c_{1}}\right)\left(\frac{L_{e}}{W_{e}}\right)\left(\frac{1}{h / \lambda_{0}}\right)
$$

$$
\begin{aligned}
& c_{1}=1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}} \quad\left(n_{1}=\sqrt{\varepsilon_{r} \mu_{r}}\right) \\
p= & 1+\frac{a_{2}}{10}\left(k_{0} W_{e}\right)^{2}+\left(a_{2}^{2}+2 a_{4}\right)\left(\frac{3}{560}\right)\left(k_{0} W_{e}\right)^{4} \\
& +c_{2}\left(\frac{1}{5}\right)\left(k_{0} L_{e}\right)^{2}+a_{2} c_{2}\left(\frac{1}{70}\right)\left(k_{0} W_{e}\right)^{2}\left(k_{0} L_{e}\right)^{2}
\end{aligned}
$$

Calculation of $\boldsymbol{Q}_{s p}$ (cont.)

where

$$
\begin{aligned}
& a_{2}=-0.16605 \\
& a_{4}=0.00761 \\
& c_{2}=-0.0914153
\end{aligned}
$$

The radiation Q factor becomes more

$$
Q_{s p} \approx \frac{3}{16}\left(\frac{\varepsilon_{r}}{p c_{1}}\right)\left(\frac{L_{e}}{W_{e}}\right)\left(\frac{1}{h / \lambda_{0}}\right)
$$

h / λ_{0}

Calculation of $\boldsymbol{Q}_{S W}$

Surface-wave radiation efficiency:

$$
e_{r}^{s w} \equiv \frac{P_{s p}}{P_{s p}+P_{s w}}
$$

so

$$
\frac{1}{e_{r}^{s w}}=\frac{P_{s p}+P_{s w}}{P_{s p}}=1+\frac{P_{s w}}{P_{s p}}
$$

Hence

$$
P_{s w}=P_{s p}\left(\frac{1}{e_{r}^{s w}}-1\right)
$$

Calculation of $\boldsymbol{Q}_{s w}$ (cont.)

Now look at the Q's :
Hence, we have

$$
\begin{array}{rlrl}
Q_{s w}=\omega_{0} \frac{U_{S}}{P_{s w}} & \frac{Q_{s w}}{Q_{s p}} & =\frac{P_{s p}}{P_{s w}} \\
Q_{s p}=\omega_{0} \frac{U_{S}}{P_{s p}} & =\frac{1}{\frac{1}{e_{r}^{s w}}-1} \\
& =\frac{e_{r}^{s w}}{1-e_{r}^{s w}}
\end{array}
$$

Calculation of $\boldsymbol{Q}_{S W}$ (cont.)

Hence, we have

$$
Q_{s w}=Q_{s p}\left(\frac{e_{r}^{s w}}{1-e_{r}^{s w}}\right)
$$

For the radiation efficiency, the patch can be approximated by a horizontal electric dipole at the center of the patch.

$$
e_{r}^{s w} \approx e_{r}^{h e d}
$$

Calculation of $Q_{s w}$ (cont.)

$$
\begin{gathered}
e_{r}^{\text {hed }}=\frac{P_{s p}^{\text {hed }}}{P_{s p}^{\text {hed }}+P_{s w}^{\text {hed }}}=\frac{1}{1+\left(P_{s w}^{\text {hed }} / P_{s p}^{\text {hed }}\right)} \\
p_{s p}^{\text {hed }} \approx \frac{1}{\lambda_{0}^{2}}\left(k_{0} h\right)^{2}\left(80 \pi^{2} \mu_{r}^{2} c_{1}\right) \\
p_{s w}^{\text {hed }} \approx \frac{1}{\lambda_{0}^{2}}\left(k_{0} h\right)^{3}\left(60 \pi^{3} \mu_{r}^{3}\left(1-\frac{1}{n_{1}^{2}}\right)^{3}\right) \\
\text { where } \\
c_{1}=1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}} \\
n_{1}=\sqrt{\varepsilon_{r} \mu_{r}}
\end{gathered}
$$

Calculation of $\boldsymbol{Q}_{S W}$ (cont.)

Hence, we have

This holds for any shape patch (assuming the HED approximation is accurate).

Comparison of Qs

Radiation Efficiency

$$
e_{r} \equiv \frac{P_{s p}}{P_{t o t}}=\frac{P_{s p}}{P_{s p}+P_{s w}+P_{c}+P_{d}}
$$

Note that $\quad Q_{i}=\omega_{0} \frac{U_{s}}{P_{i}}$

Hence $\quad P_{i} \propto \frac{1}{Q_{i}}$

Radiation Efficiency (cont.)

$$
\begin{aligned}
& \text { Hence } e_{r}=\frac{\frac{1}{Q_{s p}}}{\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}+\frac{1}{Q_{c}}+\frac{1}{Q_{d}}} \\
& \text { or } e_{r}=\frac{\frac{1}{Q_{s p}}}{\frac{1}{Q}} \quad \text { or } \quad e_{r}=\frac{Q}{Q_{s p}}
\end{aligned}
$$

Radiation Efficiency (cont.)

Also, we can write

$$
e_{r}=\frac{P_{s p}}{P_{t o t}}=\left(\frac{P_{s p}}{P_{r}}\right)\left(\frac{P_{r}}{P_{t o t}}\right)
$$

where $\quad P_{r}=P_{s p}+P_{s w}$

Define:

$$
\begin{aligned}
e_{r}^{s w} & =\frac{P_{s p}}{P_{r}} \\
e_{r}^{\text {diss }} & =\frac{P_{r}}{P_{t o t}}
\end{aligned}
$$

Radiation Efficiency (cont.)

Then

$$
e_{r}=e_{r}^{s w} e_{r}^{\text {diss }}
$$

where

$$
e_{r}^{s W}=\frac{Q_{r}}{Q_{s p}} \quad e_{r}^{d i s s}=\frac{Q}{Q_{r}}
$$

$$
\text { and } \quad \frac{1}{Q_{r}}=\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}
$$

Radiation Efficiency (cont.)

