ECE 6345

Spring 2015

Prof. David R. Jackson ECE Dept.

Notes 5

Overview

This set of notes discusses improved models of the probe inductance of a coaxially-fed patch (accurate for thicker substrates). A parallel-plate waveguide model is initially assumed (at the end of the notes we will also look at the actual finite patch).

Overview (cont.)

The following models are investigated:

- Cosine-current model
- Gap-source model
- Frill model

Derivations are given in the Appendix.
Even more details may be found in the reference below.

Reference:
H. Xu, D. R. Jackson, and J. T. Williams, "Comparison of Models for the Probe Inductance for a Parallel Plate Waveguide and a Microstrip Patch," IEEE Trans. Antennas and Propagation, vol. 53, pp. 3229-3235, Oct. 2005.

Cosine Current Model

We assume a tube of current (as in Notes 4) but with a z variation.

$$
I(z)=\cos [k(z-h)]
$$

Note: The derivative of the current is zero at the top conductor (PEC).

$$
Z_{i n}=\frac{2 P_{c}}{|I(0)|^{2}}
$$

$P_{c}=$ complex power radiated by probe current

$$
P_{c}=\frac{1}{2} \int_{S_{p}} E_{z} J_{s z}^{*} d S
$$

Cosine Current Model (cont.)

Final result:

$$
Z_{\text {in }}=\frac{1}{8}\left(k_{0} h\right) \eta_{0}\left(\frac{1}{\varepsilon_{r}}\right) \sec ^{2}\left(k_{0} h \sqrt{\varepsilon_{r}}\right) \sum_{m=0}^{\infty}\left|I_{m}\right|^{2} \bar{k}_{\rho m}^{2}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}\left(k_{\rho m} a\right)
$$

where

$$
\begin{aligned}
& I_{m}=\left(\frac{2}{1+\delta_{m o}}\right)\left[\frac{(k h)}{(k h)^{2}-(m \pi)^{2}}\right] \sin (k h) \\
& k_{\rho m}=\left(k_{1}^{2}-\left(\frac{m \pi}{h}\right)^{2}\right)^{1 / 2} \quad \begin{array}{c}
\text { Note: The } \\
\text { to be a } \\
\text { negati }
\end{array} \\
& \bar{k}_{\rho m}=k_{\rho m} / k_{0} \quad \delta_{m 0}=\left\{\begin{array}{l}
1, m=0 \\
0, m \neq 0
\end{array}\right.
\end{aligned}
$$

Gap Source Model

An ideal gap voltage source of height Δ is assumed at the bottom of the probe.

$$
Z_{\text {in }}=\frac{1}{I(\Delta)}
$$

Gap Source Model (cont.)

Final result:

$$
Y_{i n}=j 4 \pi\left(\frac{1}{\eta_{0}}\right)\left(\frac{a}{h}\right) \varepsilon_{r} \sum_{m=0}^{\infty}\left[\frac{H_{0}^{(2)^{\prime}}\left(k_{\rho m} a\right)}{\left(1+\delta_{m 0}\right) \bar{k}_{\rho m} H_{0}^{(2)}\left(k_{\rho m} a\right)}\right] \operatorname{sinc}\left(\frac{2 m \pi \Delta}{h}\right)
$$

where

$$
\begin{aligned}
& k_{\rho m}=\left(k_{1}^{2}-\left(\frac{m \pi}{h}\right)^{2}\right)^{1 / 2} \\
& \bar{k}_{\rho m}=k_{\rho m} / k_{0} \\
& \delta_{m 0}= \begin{cases}1, m=0 \\
0, m \neq 0\end{cases}
\end{aligned}
$$

Note: The wavenumber $k_{\rho m}$ is chosen to be a positive real number or a negative imaginary number.

Frill Model

A magnetic frill of radius b is assumed on the mouth of the coax.

$$
\underline{M}_{s}=-\underline{\hat{z}} \times \underline{E}=-\underline{\hat{z}} \times\left(\underline{\hat{\rho}} E_{\rho}\right) \quad \Longleftrightarrow \quad M_{s \phi}=-E_{\rho}
$$

Choose:

$$
E_{\rho}=\frac{1}{\rho}\left[\frac{1}{\ln (b / a)}\right]
$$

$$
Z_{i n}=\frac{1}{I(0)}
$$

(TEM mode of coax, assuming 1 V)

Frill Model (cont.)

Final result:

$$
Y_{i n}=j\left(\frac{1}{\eta_{0}}\right)\left(\frac{1}{k_{0} h}\right)\left(\frac{1}{\ln (b / a)}\right) 4 \pi \varepsilon_{r} \sum_{m=0}^{\infty} \frac{H_{0}^{(2)}\left(k_{\rho m} b\right)-H_{0}^{(2)}\left(k_{\rho m} a\right)}{\left(\bar{k}_{\rho m}^{2}\right)\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right)}
$$

where

$$
\begin{aligned}
& k_{\rho m}=\left(k_{1}^{2}-\left(\frac{m \pi}{h}\right)^{2}\right)^{1 / 2} \\
& \bar{k}_{\rho m}=k_{\rho m} / k_{0} \\
& \delta_{m 0}=\left\{\begin{array}{l}
1, m=0 \\
0, m \neq 0
\end{array}\right.
\end{aligned}
$$

Note: The wavenumber $k_{p m}$ is chosen to be a positive real number or a negative imaginary number.

Comparison of Models

Next, we show results that compare the various models, especially as the substrate thickness increases.

Comparison of Models

Comparison of Models (cont.)

Models are compared for varying substrate thickness.

$\varepsilon_{r}=2.2$
$a=0.635 \mathrm{~mm}$
$f=2 \mathrm{GHz}$
$Z_{0}=50 \Omega$
($b=2.19 \mathrm{~mm}$)
($\left.\lambda_{0}=15 \mathrm{~cm}\right)$

Note:
$\lambda_{d} / 4=0.025[\mathrm{~m}]$

Comparison of Models (cont.)

For the gap-source model, the results depend on Δ.

$$
\begin{aligned}
& \varepsilon_{r}=2.2 \\
& a=0.635 \mathrm{~mm} \\
& f=2 \mathrm{GHz} \\
& Z_{0}=50 \Omega \\
& (b=2.19 \mathrm{~mm}) \\
& \left(\lambda_{0}=15 \mathrm{~cm}\right)
\end{aligned}
$$

Comparison of Models (cont.)

Comparison of Models (cont.)

These results suggest the " $1 / 3$ " rule: The best Δ is chosen as

$$
\Delta=\frac{b-a}{3}
$$

This rule applies for a coax feed that has a 50Ω impedance.

Comparison of Models (cont.)

The gap-source model is compared with the frill model, using the optimum gap height ($1 / 3$ rule).

Reactance

$\varepsilon_{r}=2.2$
$a=0.635 \mathrm{~mm}$
$f=2 \mathrm{GHz}$
$Z_{0}=50 \Omega$
($b=2.19 \mathrm{~mm}$)
$\left(\lambda_{0}=15 \mathrm{~cm}\right)$

Comparison of Models (cont.)

The gap-source model is compared with the frill model, using the optimum gap height (1/3 rule).

Resistance

$\varepsilon_{r}=2.2$
$a=0.635 \mathrm{~mm}$
$f=2 \mathrm{GHz}$
$Z_{0}=50 \Omega$
($b=2.19 \mathrm{~mm}$)
$\left(\lambda_{0}=15 \mathrm{~cm}\right)$

Probe in Patch

A probe in a patch does not see an infinite parallel-plate waveguide.

Exact calculation of probe reactance:

$$
\begin{gathered}
Z_{i n}=j X_{p}+Z_{\text {in }}^{\text {cavity }} \\
X_{p}=\operatorname{Im}\left(Z_{i n}\right)_{f_{0}}
\end{gathered}
$$

$Z_{\text {in }}$ may be calculated by HFSS or any other software, or it may be measured.

$$
f_{0}=\text { frequency at which } R_{\text {in }} \text { is maximum }\left(X_{\text {in }}^{\text {cavity }}=0\right)
$$

Probe in Patch (cont.)

Cavity Model

Using the cavity model, we can derive an expression for the probe reactance (derivation given later)

This formula assumes that there is no z variation of the probe current or cavity fields (thinsubstrate approximation), but it does accurately account for the actual patch dimensions.

Probe in Patch (cont.)

Final result:

$$
X_{p}=-\omega \mu_{0} \mu_{r} h \sum_{(m, n) \neq(1,0)} \frac{\cos ^{2}\left(\frac{m \pi x_{0}}{L_{e}}\right) \cos ^{2}\left(\frac{n \pi y_{0}}{W_{e}}\right)}{\left(\frac{W_{e} L_{e}}{4}\right)\left(1+\delta_{m 0}\right)\left(1+\delta_{n 0}\right)} \frac{\operatorname{sinc}^{2}\left(\frac{n \pi w_{p}}{2}\right)}{k^{2}-\left(\frac{m \pi}{L_{e}}\right)^{2}-\left(\frac{n \pi}{W_{e}}\right)^{2}}
$$

$$
\begin{aligned}
w_{p} & =e^{3 / 2} a \\
a & =\text { probe radius }
\end{aligned}
$$

$\left(x_{0}, y_{0}\right)=$ probe location

Probe in Patch (cont.)

Image Theory

Image theory can be used to improve the simple parallel-plate waveguide model when the probe gets close to the patch edge.

Using image theory, we have an infinite set of "image probes."

Probe in Patch (cont.)

A simple approximate formula is obtained by using two terms: the original probe current in a parallel-plate waveguide and one image.
This should be an improvement when the probe is close to an edge.

$$
\begin{gathered}
X_{i n}^{\mathrm{two}}=X_{\text {in }}^{\text {probe }}+X_{\text {im }}^{\text {image }} \\
X_{i n}^{\mathrm{two}}=-\frac{1}{4} \eta k h Y_{0}(k a) J_{0}(k a)-\frac{1}{4} \eta k h Y_{0}(2 k s) J_{0}(k a)
\end{gathered}
$$

Probe in Patch (cont.)

As shown on the next plot, the best overall approximation in obtained by using the following formula:

$$
X_{\text {in }}=\max \left(X_{\text {in }}^{\text {probe }}, X_{i n}^{\text {two }}\right) \quad \text { "modified CAD formula" }
$$

Probe in Patch (cont.)

Results show that the simple formula ("modified CAD formula") works fairly well.

Appendix

Next, we investigate each of the improved probe models in more detail:

- Cosine-current model
- Gap-source model
- Frill model

Cosine Current Model

Assume that $I(z)=\cos k(z-h)$

Note: $I(0)=\cos (k h)$

Cosine Current Model (cont.)

Circuit Model:

$$
P_{c}=\frac{1}{2} Z_{i n}|I(0)|^{2} \quad \square \quad Z_{i n}=\frac{2 P_{c}}{|I(0)|^{2}}
$$

Cosine Current Model (cont.)

$$
Z_{i n}=\frac{2 P_{c}}{|I(0)|^{2}}
$$

Represent the probe current as:

$$
I(z)=\sum_{m=0}^{\infty} I_{m} \cos \left(\frac{m \pi z}{h}\right)
$$

This will allow us to find the fields and hence the power radiated by the probe current.

Cosine Current Model (cont.)

Using Fourier-series theory:

$$
\int_{0}^{h} I(z) \cos \left(\frac{m^{\prime} \pi z}{h}\right) d z=\sum_{m=0}^{\infty} I_{m} \int_{0}^{h} \cos \left(\frac{m \pi z}{h}\right) \cos \left(\frac{m^{\prime} \pi z}{h}\right) d z
$$

The integral is zero unless $m=m^{\prime}$.

Hence

$$
\begin{aligned}
& \int_{0}^{h} I(z) \cos \left(\frac{m \pi z}{h}\right) d z=I_{m}\left[\frac{h}{2}\left(1+\delta_{m 0}\right)\right] \\
& \quad \Rightarrow I_{m}=\frac{2}{h\left(1+\delta_{m 0}\right)} \int_{0}^{h} I(z) \cos \left(\frac{m \pi z}{h}\right) d z
\end{aligned}
$$

Cosine Current Model (cont.)

or

$$
I_{m}=\frac{2}{h\left(1+\delta_{m o}\right)} \int_{0}^{h} \cos k(z-h) \cos \left(\frac{m \pi z}{h}\right) d z
$$

Result:

$$
I_{m}=\left(\frac{2}{1+\delta_{m o}}\right)\left[\frac{(k h)}{(k h)^{2}-(m \pi)^{2}}\right] \sin (k h)
$$

(derivation omitted)

Cosine Current Model (cont.)

Note: We have both E_{z} and E_{ρ}
To see this:

$$
\begin{gathered}
\nabla \cdot \underline{E}=0 \quad \text { (Time-Harmonic Fields) } \\
\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho E_{\rho}\right)+\frac{1}{\rho} \frac{\partial \#_{\phi}}{\partial \phi}+\frac{\partial E_{z}}{\partial z}=0 \\
\text { so } \quad E_{\rho} \neq 0
\end{gathered}
$$

Cosine Current Model (cont.)

For E_{z}, we represent the field as follows:

$$
\begin{array}{ll}
\rho<a & E_{z}^{-}=\sum_{m=0}^{\infty} A_{m}^{-} \cos \left(\frac{m \pi z}{h}\right) J_{0}\left(k_{\rho m} \rho\right) \\
\rho>a & E_{z}^{+}=\sum_{m=0}^{\infty} A_{m}^{+} \cos \left(\frac{m \pi z}{h}\right) H_{0}^{(2)}\left(k_{\rho m} \rho\right)
\end{array}
$$

where

$$
\begin{aligned}
k_{\rho m} & =\left(k^{2}-\left(\frac{m \pi}{h}\right)^{2}\right)^{1 / 2} \\
& =\left(k^{2}-k_{z m}^{2}\right)^{1 / 2}
\end{aligned}
$$

Cosine Current Model (cont.)

At $\rho=a$

$$
E_{z}^{+}=E_{z}^{-} \quad(\mathrm{BC} 1)
$$

so

$$
A_{m}^{+} H_{0}^{(2)}\left(k_{\rho m} a\right)=A_{m}^{-} J_{0}\left(k_{\rho m} a\right)
$$

Cosine Current Model (cont.)

Also we have

$$
H_{\phi 2}-H_{\phi 1}=J_{s z} \quad(\mathrm{BC} 2)
$$

where

$$
H_{\phi}=\frac{-1}{j \omega \mu}\left(\frac{\partial E_{\rho}}{\partial z}-\frac{\partial E_{z}}{\partial \rho}\right)
$$

To solve for E_{ρ}, use

$$
\nabla \times \underline{H}=j \omega \varepsilon \underline{E}
$$

Cosine Current Model (cont.)

$$
\text { so } \begin{aligned}
j \omega \varepsilon E_{\rho} & =\frac{1}{\rho} \frac{\partial H_{z}}{\not \partial \phi}-\frac{\partial H_{\phi}}{\partial z} \\
E_{\rho} & =-\frac{1}{j \omega \varepsilon} \frac{\partial H_{\phi}}{\partial z}
\end{aligned}
$$

Hence we have $\quad H_{\phi}=-\frac{1}{j \omega \mu}\left[-\frac{1}{j \omega \varepsilon} \frac{\partial^{2} H_{\phi}}{\partial z^{2}}-\frac{\partial E_{z}}{\partial \rho}\right]$

For the $m^{\text {th }}$ Fourier term:

$$
H_{\phi}^{(m)}=-\frac{1}{j \omega \mu}\left[-\frac{1}{j \omega \varepsilon}\left(-k_{z m}^{2}\right) H_{\phi}^{(m)}-\frac{\partial E_{z}^{(m)}}{\partial \rho}\right]
$$

Cosine Current Model (cont.)

so that

$$
\begin{aligned}
& k^{2} H_{\phi}^{(m)}-k_{z m}^{2} H_{\phi}^{(m)}=-j \omega \varepsilon \frac{\partial E_{z}^{(m)}}{\partial \rho} \\
& \text { where } \quad k^{2}-k_{z m}^{2}=k_{\rho m}^{2}
\end{aligned}
$$

Hence

$$
H_{\phi}^{(m)}=-\frac{j \omega \varepsilon}{k_{\rho m}^{2}} \frac{\partial E_{z}^{(m)}}{\partial \rho}
$$

Cosine Current Model (cont.)

$$
H_{\phi 2}-H_{\phi 1}=J_{s z}=\frac{I}{2 \pi a}
$$

For the $m^{\text {th }}$ Fourier term:

$$
H_{\phi 2}^{(m)}-H_{\phi 1}^{(m)}=J_{s z}^{(m)}=\frac{I_{m}}{2 \pi a}
$$

where

$$
H_{\phi}^{(m)}=-\frac{j \omega \varepsilon}{k_{\rho m}^{2}} \frac{\partial E_{z}^{(m)}}{\partial \rho}
$$

Cosine Current Model (cont.)

Hence

$$
\left(\frac{-j \omega \varepsilon}{k_{\rho m}^{2}}\right)\left(k_{\rho m}\right)\left[A_{m}^{+} H_{0}^{(2)^{\prime}}\left(k_{\rho m} a\right)-A_{m}^{-} J_{0}^{\prime}\left(k_{\rho m} a\right)\right]=\frac{I_{m}}{2 \pi a}
$$

$$
\begin{equation*}
\text { Using } \quad A_{m}^{+} H_{0}^{(2)}\left(k_{\rho m} a\right)=A_{m}^{-} J_{0}\left(k_{\rho m} a\right) \tag{BC1}
\end{equation*}
$$

we have

$$
A_{m}^{+} H_{0}^{(2)^{\prime}}\left(k_{\rho m} a\right)-A_{m}^{+}\left(\frac{H_{0}^{(2)}\left(k_{\rho m} a\right)}{J_{0}\left(k_{\rho m} a\right)}\right) J_{0}^{\prime}\left(k_{p m} a\right)=\left(\frac{I_{m}}{2 \pi a}\right)\left(\frac{k_{\rho m}}{-j \omega \varepsilon}\right)
$$

Cosine Current Model (cont.)

$$
\begin{aligned}
& \text { or } \\
& A_{m}^{+}\left[J_{0}\left(k_{\rho m} a\right) H_{0}^{(2)^{\prime}}\left(k_{\rho m} a\right)-H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}^{\prime}\left(k_{\rho m} a\right)\right]=\left(\frac{I_{m}}{2 \pi a}\right)\left(\frac{k_{\rho m}}{-j \omega \varepsilon}\right) J_{0}\left(k_{\rho m} a\right)
\end{aligned}
$$

or

$$
A_{m}^{+}\left[-j\left(\frac{2}{\pi k_{\rho m} a}\right)\right]=\left(\frac{I_{m}}{2 \pi a}\right)\left(\frac{k_{\rho m}}{-j \omega \varepsilon}\right) J_{0}\left(k_{\rho m} a\right)
$$

(using the Wronskian identity)
Hence

$$
A_{m}^{+}=I_{m}\left[-\frac{1}{4}\left(\frac{k_{\rho m}^{2}}{\omega \varepsilon}\right) J_{0}\left(k_{\rho m} a\right)\right]
$$

Cosine Current Model (cont.)

We now find the complex power radiated by the probe:

$$
\begin{aligned}
P_{c} & =\frac{-1}{2} \oint_{s} \underline{E} \cdot \underline{J}_{s}^{*} d S \\
& =\frac{-1}{2} \int_{0}^{2 \pi} \int_{0}^{h} E_{z}(a) J_{s z}^{*} a d z d \phi \\
& =-\pi a \int_{0}^{h} E_{z}(a) J_{s z}^{*} d z \\
& =-\frac{\pi a}{2 \pi a} \int_{0}^{h} E_{z}(a) I^{*}(z) d z \\
& =-\frac{1}{2} \int_{0}^{h}\left(\sum_{m=0}^{\infty} A_{m}^{+} H_{0}^{(2)}\left(k_{\rho m} a\right) \cos \left(\frac{m \pi z}{h}\right)\right) \cdot\left(\sum_{m^{\prime}=0}^{\infty} I_{m^{\prime}}^{*} \cos \left(\frac{m^{\prime} \pi z}{h}\right)\right) d z
\end{aligned}
$$

Cosine Current Model (cont.)

Integrating in z and using orthogonality, we have:

$$
\begin{aligned}
P_{c} & =-\frac{1}{2} \sum_{m=0}^{\infty} A_{m}^{+} I_{m}^{*} H_{0}^{(2)}\left(k_{\rho m} a\right)\left(\frac{h}{2}\right)\left(1+\delta_{m 0}\right) \\
& =-\left(\frac{h}{4}\right) \sum_{m=0}^{\infty}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right)\left[I_{m}\left(-\frac{1}{4}\right)\left(\frac{k_{\rho m}^{2}}{\omega \varepsilon}\right) J_{0}\left(k_{\rho m} a\right)\right] I_{m}^{*}
\end{aligned}
$$

Hence, we have:

$$
P_{c}=+\frac{h}{16}\left(\frac{1}{\omega \varepsilon}\right) \sum_{m=0}^{\infty}\left|I_{m}\right|^{2} k_{p m}^{2}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}\left(k_{\rho m} a\right)
$$

Cosine Current Model (cont.)

$$
Z_{i n}=\frac{2 P_{c}}{\cos ^{2}(k h)}
$$

Therefore,

$$
Z_{i n}=\frac{h}{8}\left(\frac{1}{\omega \varepsilon}\right) \sec ^{2}(k h) \sum_{m=0}^{\infty}\left|I_{m}\right|^{2} k_{\rho m}^{2}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}\left(k_{\rho m} a\right)
$$

Define: $\bar{k}_{\rho m}=\frac{k_{\rho m}}{k_{0}}$

$$
=\sqrt{\varepsilon_{r} \mu_{r}-\left(\frac{m \pi}{k_{0} h}\right)^{2}}
$$

Cosine Current Model (cont.)

Also, use $\quad \frac{k_{0}}{\omega \varepsilon}=\frac{\varphi \sqrt{\mu_{0} \varepsilon_{0}}}{\not \partial \varepsilon}=\frac{\eta_{0}}{\varepsilon_{r}}$
We then have

$$
Z_{\text {in }}=\frac{1}{8}\left(k_{0} h\right) \eta_{0}\left(\frac{1}{\varepsilon_{r}}\right) \sec ^{2}\left(k_{0} h \sqrt{\varepsilon_{r}}\right) \sum_{m=0}^{\infty}\left|I_{m}\right|^{2} \bar{k}_{\rho m}^{2}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}\left(k_{\rho m} a\right)
$$

The probe reactance is: $\quad X_{p}=\operatorname{Im}\left(Z_{i n}\right)$

Cosine Current Model (cont.)

Thin substrate approximation

$$
Z_{\text {in }}=\frac{1}{8}\left(k_{0} h\right) \eta_{0}\left(\frac{1}{\varepsilon_{r}}\right) \sec ^{2}\left(k_{0} h \sqrt{\varepsilon_{r}}\right) \sum_{m=0}^{\infty}\left|I_{m}\right|^{2} \bar{k}_{\rho m}^{2}\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right) J_{0}\left(k_{\rho m} a\right)
$$

$k_{0} h \ll 1$: Keep only the $m=0$ term

$$
I_{m}=\left(\frac{2}{1+\delta_{m o}}\right)\left[\frac{(k h)}{(k h)^{2}-(m \pi)^{2}}\right] \sin (k h)
$$

The result is

$$
Z_{i n} \approx \frac{1}{4} \eta_{0}\left(k_{0} h\right) \mu_{r} J_{0}(k a) H_{0}^{(2)}(k a)
$$

(same as previous result using uniform model)

Gap Model

$$
\begin{gathered}
h \underset{\sim}{E_{z}}(z, \rho)=\sum_{m=0}^{\infty} B_{m} H_{0}^{(2)}\left(k_{\rho m} \rho\right) \cos \left(\frac{m \pi z}{h}\right) \\
E_{z}(z, a)=\left\{\begin{array}{l}
-1 / \Delta, \quad 0<z<\Delta \\
0, \\
\varepsilon_{r}, \mu_{r}
\end{array}\right] \text { otherwise. }
\end{gathered}
$$

Note: It is not clear how best to choose Δ, but this will be re-visited later.

Gap Model (cont.)

At $\rho=a$:

$$
E_{z}(z, a)=\sum_{m=0}^{\infty} B_{m} H_{0}^{(2)}\left(k_{\rho m} a\right) \cos \left(\frac{m \pi z}{h}\right)= \begin{cases}-1 / \Delta, & 0<z<\Delta \\ 0, & \text { otherwise } .\end{cases}
$$

From Fourier series analysis (details omitted):

$$
B_{m}=\frac{-2}{h\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right)} \operatorname{sinc}\left(\frac{m \pi \Delta}{h}\right)
$$

Gap Model (cont.)

$$
\begin{aligned}
& \text { Z }
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i n}=2 \pi a J_{s z}(\Delta) \text { where } \quad J_{s z}(z)=H_{\phi}(z)
\end{aligned}
$$

The magnetic field is found from E_{z}, with the help of the magnetic vector potential A_{Z} (the field is TM_{z}):

$$
\begin{aligned}
H_{\phi}= & -\frac{1}{\mu} \frac{\partial A_{z}}{\partial \rho} \quad \text { Use: } \quad A_{z}(z, \rho)=\sum_{m=0}^{\infty} A_{m} H_{0}^{(2)}\left(k_{\rho m} \rho\right) \cos \left(\frac{m \pi z}{h}\right) \\
& \text { where } \quad E_{z}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) A_{z} \quad \begin{array}{r}
\text { Setting } \rho=a \text { allows us to } \\
\text { solve for the coefficients } A_{m} .
\end{array}
\end{aligned}
$$

Gap Model (cont.)

Final result:

$$
Y_{i n}=j 4 \pi\left(\frac{1}{\eta}\right)\left(\frac{a}{h}\right) k \sum_{m=0}^{\infty}\left[\frac{H_{0}^{(2)^{\prime}}\left(k_{\rho m} a\right)}{\left(1+\delta_{m 0}\right) k_{\rho m} H_{0}^{(2)}\left(k_{\rho m} a\right)}\right] \operatorname{sinc}\left(\frac{2 m \pi \Delta}{h}\right)
$$

Frill Model

To find the current $I(z)$, use reciprocity.

Introduce a ring of magnetic current $K=1$ in the ϕ direction at z (the testing current " B ").

$$
\begin{aligned}
I(z) & =\int_{V} \underline{H}^{a} \cdot \underline{M}^{b} d V=-\langle A, B\rangle=-\langle B, A\rangle \\
& =\int_{V} \underline{H}^{b} \cdot \underline{M}^{a} d V \\
& =\int_{S_{F}} \underline{H}^{b} \cdot \underline{M}_{s} d S
\end{aligned}
$$

Frill Model (cont.)

$$
\begin{aligned}
I(z) & =\int_{S_{F}} \underline{H}^{b} \cdot \underline{M}_{s} d S \\
& =\int_{0}^{2 \pi} \int_{a}^{b} H_{\phi}^{b}(\rho, 0) M_{s \phi} \rho d \rho d \phi \\
& =2 \pi \int_{a}^{b} H_{\phi}^{b}(\rho, 0) M_{s \phi} \rho d \rho \\
& =2 \pi \int_{a}^{b} H_{\phi}^{b}(\rho, 0)\left[-\frac{1}{\rho} \frac{1}{\ln (b / a)}\right] \rho d \rho \\
& =-\frac{2 \pi}{\ln (b / a)} \int_{a}^{b} H_{\phi}^{b}(\rho, 0) d \rho
\end{aligned}
$$

Frill Model (cont.)

The magnetic current ring B may be replaced by a 1 V gap source of zero height (by the equivalence principle).

$$
I(z)=-\frac{2 \pi}{\ln (b / a)} \int_{a}^{b} H_{\phi}^{\text {gap }}(\rho, 0) d \rho
$$

Frill Model (cont.)

Final result:

$$
Y_{i n}=j\left(\frac{1}{h \eta}\right)\left(\frac{1}{\ln (b / a)}\right) 4 \pi k \sum_{m=0}^{\infty} \frac{H_{0}^{(2)}\left(k_{\rho m} b\right)-H_{0}^{(2)}\left(k_{\rho m} a\right)}{\left(k_{\rho m}^{2}\right)\left(1+\delta_{m 0}\right) H_{0}^{(2)}\left(k_{\rho m} a\right)}
$$

