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Overview 

In this set of notes we look at two different models for calculating the 
radiation pattern of a microstrip antenna: 
 
 Electric current model 
 Magnetic current model 

We also look at two different substrate assumptions: 
 
 Infinite substrate 
 Truncated substrate (truncated at the edge of the patch). 
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Review of Equivalence Principle 
New problem: 
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Review of Equivalence Principle 

A common choice (PEC inside): 
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The electric surface current sitting 
on the PEC object does not 
radiate, and can be ignored. 
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Model of Patch and Feed 
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Model of Patch and Feed 
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Electric Current Model: Infinite Substrate 
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Note: The frill is ignored. 

The surface S “hugs” 
the PEC metal. 
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Let patch top bot
s s sJ J J= +

Electric Current Model: Infinite Substrate 
(cont.) 
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Magnetic Current Model: Infinite Substrate  

 Put zero fields 
 Remove patch, probe, and frill current 
 Put substrate and ground plane 
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Exact model: 

ˆe
sM n E= − ×

Approximate model: 

Magnetic Current Model: Infinite Substrate 
(cont.) 
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Note: The magnetic currents radiate inside an infinite substrate above a ground plane.  

 
10 



Magnetic Current Model: Truncated Substrate 

Note: The magnetic currents radiate in free space above a ground plane.  

Approximate model: 
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The substrate is truncated at the edge of the patch. 



Electric Current Model: Truncated Substrate 

rε
x

S The patch and probe are 
replaced by surface 
currents, as before. 

Next, we replace the dielectric 
with polarization currents. 
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The substrate is truncated at the edge of the patch. 
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Electric Current Model: Truncated Substrate 
(cont.) 
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In this model we have three 
separate electric currents. 
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Comments on Models 

Infinite Substrate 

 The electric current model is exact (if we neglect the frill), but it 
requires knowledge of the exact patch and probe currents. 

 The magnetic current model is approximate, but fairly simple.  

 For a rectangular patch, both models are fairly simple if only the (1,0) 
mode is assumed.  

 For a circular patch, the magnetic current model is much simpler (it 
does not involve Bessel functions). 
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Comments on Models (cont.) 

Truncated Substrate 

 The electric current model is exact (if we neglect the frill), but it 
requires knowledge of the exact patch and probe currents, as well as 
the field inside the patch cavity (to get the polarization currents). It is 
a complicated model. 

 The magnetic current model is approximate, but very simple. This is 
the recommended model.  

 For the magnetic current model the same formulation applies as for 
the infinite substrate – the substrate is simply taken to be air. 
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Theorem 

Assumptions:  
 

1) The electric and magnetic current models are based on the 
fields of a single cavity mode corresponding to an ideal lossless 
cavity with PMC walls. 

2) The probe current is neglected in the electric current model.  

The electric and magnetic models  yield identical results  
at the resonance frequency of the cavity mode.  
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Note: This theorem is true for either infinite or truncated substrates. 



Electric-current model: 

ˆe
sM n E= − ×

Magnetic-current model: 
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Theorem (cont.) 

ˆe
sJ z H= − ×

(E, H) = fields of resonant cavity mode with PMC side walls 
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Theorem (cont.) 

Proof: 

( ) ( )0 : , 0,0f f E H= ≠At

Ideal cavity 

rε
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We start with an ideal cavity having PMC walls on the sides. This cavity will 
support a valid non-zero set of fields at the resonance frequency f0 of the mode. 
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Proof 

Equivalence principle: 

Put (0, 0) outside S    

Keep (E, H) inside S    

x
S ( , )E H ( )0,0

PEC 

x
S PMC ( , )E H

The PEC and PMC walls have been 
removed in the zero field (outside) 
region. We keep the substrate and 
ground plane in the outside region. 

Proof for infinite substrate 
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Proof (cont.) 

ˆe
s iJ n H= ×

ˆe
s iM n E= − ×

Note: The electric current on the ground is neglected (it does not radiate). 

Note the inward 
pointing normal ˆin
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Proof (cont.) 
Exterior Fields: 
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ˆ ˆe patch J
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(The equivalent electric current is the same as the electric current in 
the electric current model.)  
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(The equivalent current is the negative 
of the magnetic current in the magnetic 
current model.)  
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Proof (cont.) 

Hence 
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Proof for truncated model 
 
 
 
 

Theorem for Truncated Substrate 
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Replace the dielectric with polarization current: 
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Proof (cont.) 
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Rectangular Patch 

Ideal cavity model: 
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Divide by X(x)Y(y): 

so 
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Rectangular Patch (cont.) 
Hence 
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General solution: 

Boundary condition: 
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Boundary condition: 
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so 

so 
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Returning to the Helmholtz equation,  

Following the same procedure as for the X(x) function, we have:  

Hence 
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Rectangular Patch (cont.) 
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Rectangular Patch (cont.) 



Current: 
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Rectangular Patch (cont.) 
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Rectangular Patch (cont.) 
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Static (0,0) mode: 

 This is a “static capacitor” mode. 

A patch operating in this mode does not radiate at zero frequency, but it 
can be made resonant at a higher frequency if the patch is loaded by an 
inductive probe (a good way to make a miniaturized patch). 
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Rectangular Patch (cont.) 



Radiation Model for (1,0) Mode 

Electric-current model: 
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Radiation Model for (1,0) Mode (cont.) 

Magnetic-current model: 
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Hence 
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Radiation Model for (1,0) Mode (cont.) 

The non-radiating edges do not contribute to 
the far-field pattern in the principal planes. 

 
34 



Circular Patch 
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Circular Patch (cont.) 
Note: cosφ and sinφ modes are degenerate (same resonance frequency). 
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Circular Patch (cont.) 
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Circular Patch (cont.) 
Electric current model: 

TM11 mode: 

1 1 1ˆˆ
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Very complicated! 
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Magnetic current model: 
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Circular Patch (cont.) 



Note: 
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Circular Patch (cont.) 



Ring approximation: 
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Circular Patch (cont.) 
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