ECE 6345

 Fall 2015

 Fall 2015}

Prof. David R. Jackson ECE Dept.

Notes 11

In this set of notes we calculate the power radiated into space by a current source sitting on top on an infinite grounded substrate.

- First we calculate the power radiated by a horizontal electric dipole.
- We develop a CAD formula for the radiated power of the dipole.
- Then we extend this to a finite-size patch current.

Note: The power radiated into space in the key ingredient for developing the CAD formula for the space-wave Q factor $\left(Q_{s p}\right)$ of the patch. This leads to the CAD formulas for bandwidth, radiation efficiency, and input resistance.

Radiated Power of Dipole

Horizontal electric dipole in the x direction on an infinite substrate:

$$
\begin{gathered}
E_{\theta}=(I l) E_{0} \cos \phi G(\theta) \\
E_{\phi}=(I l) E_{0}(-\sin \phi) F(\theta) \\
E_{0}=\frac{-j \omega \mu_{0}}{4 \pi r} e^{-j k_{0} r}
\end{gathered}
$$

Poynting vector in far field:

$$
S_{r}^{d i p}=\frac{1}{2 \eta_{0}}\left[\left|E_{\theta}\right|^{2}+\left|E_{\phi}\right|^{2}\right]
$$

Radiated Power of Dipole (cont.)

Total power radiated into space:

$$
\begin{aligned}
P_{s p}^{d i p} & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} S_{r}^{d i p}(r, \theta, \phi) r^{2} \sin \theta d \theta d \phi \\
& =\frac{1}{2 \eta_{0}}(I l)^{2}\left|E_{0}\right|^{2} r^{2}\left[\int_{0}^{2 \pi} \cos ^{2} \phi \int_{0}^{\pi / 2}|G(\theta)|^{2} \sin ^{2} \theta d \theta+\int_{0}^{2 \pi} \sin ^{2} \phi \int_{0}^{\pi / 2}|F(\theta)|^{2} \sin \theta d \theta\right]
\end{aligned}
$$

Radiated Power of Dipole (cont.)

Hence

$$
P_{s p}^{d i p}=\frac{\pi}{2 \eta_{0}}(I l)^{2}\left|E_{0}\right|^{2} r^{2} \int_{0}^{\pi / 2}\left(|F(\theta)|^{2}+|G(\theta)|^{2}\right) \sin \theta d \theta
$$

Note that $\quad E_{0} r=\frac{-j \omega \mu_{0}}{4 \pi} e^{-j k_{0} r}$

$$
\text { so }\left|E_{0} r\right|^{2}=\left(\frac{\omega \mu_{0}}{4 \pi}\right)^{2}=\left(\frac{k_{0} \eta_{0}}{4 \pi}\right)^{2}
$$

and thus

$$
P_{s p}^{d i p}=(I l)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{32 \pi}\right) \int_{0}^{\pi / 2}\left[|F(\theta)|^{2}+|G(\theta)|^{2}\right] \sin \theta d \theta
$$

CAD Formula for Dipole Radiated Power

$$
\text { Assume } \frac{h}{\lambda_{0}} \rightarrow 0
$$

We wish to approximate

$$
\begin{aligned}
& F(\theta)=1+\Gamma^{T E}(\theta) \\
& G(\theta)=\cos \theta\left(1+\Gamma^{T M}(\theta)\right)
\end{aligned}
$$

CAD Formula for Dipole Radiated Power (cont.)

where

$$
G(\theta)=\cos \theta\left(1+\Gamma^{T M}(\theta)\right)=\frac{2 \cos \theta}{1-j\left(\frac{\varepsilon_{r} \cos (\theta)}{N_{1}(\theta)}\right) \cot \left(k_{0} h N_{1}(\theta)\right)}
$$

$$
F(\theta)=1+\Gamma^{T E}(\theta)=\frac{2}{1-j\left(\frac{N_{1}(\theta) \sec \theta}{\mu_{r}}\right) \cot \left(k_{0} h N_{1}(\theta)\right)}
$$

CAD Formula for Dipole Radiated Power (cont.)

$$
\text { Use } \cot \left(k_{0} h N_{1}(\theta)\right) \approx \frac{1}{k_{0} h N_{1}(\theta)}=\frac{1}{k_{0} h \sqrt{n_{1}^{2}-\sin ^{2} \theta}}
$$

The result is (see note below):

$$
\begin{aligned}
& G(\theta) \sim\left(\frac{2 j\left(n_{1}^{2}-\sin ^{2} \theta\right)}{\varepsilon_{r}}\right) k_{0} h \\
& F(\theta) \sim\left(2 j \mu_{r} \cos \theta\right) k_{0} h
\end{aligned}
$$

where

$$
n_{1}=\sqrt{\varepsilon_{r} \mu_{r}}
$$

Note: the " 1 " term in the denominator of the F and G functions can be neglected for a thin substrate.

CAD Formula for Dipole Radiated Power (cont.)

Use $\quad P_{s}^{d i p}=(I l)^{2}\left(\frac{k_{0}^{2} \eta_{0}}{32 \pi}\right)^{\pi / 2} \int_{0}^{\pi}\left[|F(\theta)|^{2}+|G(\theta)|^{2}\right] \sin \theta d \theta$

We need the following integrals:

$$
\begin{array}{rlr}
\int_{0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta & =\frac{1}{3} & G(\theta) \sim\left(\frac{2 j\left(n_{1}^{2}-\sin ^{2} \theta\right)}{\varepsilon_{r}}\right) k_{0} h \\
\int_{0}^{\frac{\pi}{2}} \sin \theta d \theta & =1 & F(\theta) \sim\left(2 j \mu_{r} \cos \theta\right) k_{0} h \\
\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta d \theta & =\frac{2}{3} & \\
\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta d \theta & =\frac{8}{15} &
\end{array}
$$

CAD Formula for Dipole Radiated Power (cont.)

We then have

$$
P_{s}^{d i p}=(I l)^{2}\left(\frac{k_{0}^{2} \eta_{0}}{32 \pi}\right)\left(k_{0} h\right)^{2} 4\left[\mu_{r}^{2}\left(\frac{1}{3}\right)+\frac{1}{\varepsilon_{r}^{2}}\left(n_{1}^{4}(1)-2 n_{1}^{2}\left(\frac{2}{3}\right)+\frac{8}{15}\right)\right]
$$

Substituting for the index of refraction, we have:

$$
P_{s}^{d i p}=(I l)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{8 \pi}\right)\left[\mu_{r}^{2}\left(\frac{1}{3}\right)+\mu_{r}^{2}(1)-2 \frac{\mu_{r}}{\varepsilon_{r}}\left(\frac{2}{3}\right)+\frac{1}{\varepsilon_{r}^{2}}\left(\frac{8}{15}\right)\right]
$$

Recall: $n_{1}=\sqrt{\varepsilon_{r} \mu_{r}}$

CAD Formula for Dipole Radiated Power (cont.)

$$
P_{s}^{d i p}=(I l)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{8 \pi}\right)\left[\mu_{r}^{2}\left(\frac{1}{3}\right)+\mu_{r}^{2}(1)-2 \frac{\mu_{r}}{\varepsilon_{r}}\left(\frac{2}{3}\right)+\frac{1}{\varepsilon_{r}^{2}}\left(\frac{8}{15}\right)\right]
$$

Note that []$=\mu_{r}^{2}\left(\frac{4}{3}-\frac{4}{3} \frac{1}{\varepsilon_{r} \mu_{r}}+\frac{8}{15} \frac{1}{\mu_{r}^{2} \varepsilon_{r}^{2}}\right)$

$$
=\mu_{r}^{2}\left(\frac{4}{3}\right)\left(1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}}\right)
$$

Define $c_{1} \equiv 1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}}$

Then

$$
P_{s}^{d i p} \doteq(I l)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{6 \pi}\right) \mu_{r}^{2} c_{1}
$$

Radiated Power of Patch

Assume that

$$
J_{s x}^{1,0}=\cos \left(\frac{\pi x}{L}\right)
$$

We find the equivalent dipole moment of the patch:

$$
\begin{aligned}
(\text { Il })_{\text {patch }} & =\int_{-\frac{L}{2}}^{+\frac{L}{2}} \int_{-\frac{W}{2}}^{+\frac{W}{2}} J_{s x}^{1,0}(x, y) d y d x \\
& =W \int_{-\frac{L}{2}}^{+\frac{L}{2}} \cos \left(\frac{\pi x}{L}\right) d x \\
& =W\left(\frac{2 L}{\pi}\right)
\end{aligned}
$$

Radiated Power of Patch (cont.)

$$
(I l)_{\text {patch }}=\left(\frac{2}{\pi} W L\right)
$$

Neglecting the array factor, $\quad P_{s p}^{\text {patch }} \approx P_{s p}^{\text {dip }}$
where

$$
P_{s p}^{d i p}=\left(\frac{2}{\pi} W L\right)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{6 \pi}\right) \mu_{r}^{2} c_{1}
$$

This formula may be improved by accounting for the patch array factor, which leads to the introduction of the " p factor" that is discussed in the next set of notes.

