ECE 6345

Spring 2015

Prof. David R. Jackson ECE Dept.

Notes 14

In this set of notes we derive a CAD formula for the space-wave Q factor $\left(Q_{\text {sp }}\right)$ of the rectangular patch, using the previously-derived CAD formula for the space-wave radiated power.

CAD Formula for $\boldsymbol{Q}_{s p}$

$$
\text { Recall } \begin{aligned}
Q_{s p} & =\omega_{0}\left(\frac{U_{s}}{P_{s p}}\right) \\
& =\omega_{0}\left(\frac{2 U_{H}}{P_{s p}}\right)
\end{aligned}
$$

We have, from Notes 12,

$$
\begin{aligned}
P_{s p} & =p P_{s p}^{d i p} \\
& =p\left(\frac{2}{\pi} W L\right)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{6 \pi}\right) \mu_{r}^{2} c_{1} \quad c_{1}=1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}}
\end{aligned}
$$

Where it is assumed that $\quad J_{s x}^{1,0}=\cos \left(\frac{\pi x}{L}\right)$
(The origin is at the center of the patch.)

CAD Formula for $Q_{s p}$ (cont.)

To calculate the stored magnetic energy, use $\quad \underline{H}=\underline{\hat{y}} \cos \left(\frac{\pi x}{L}\right)$
The stored magnetic energy is then

$$
\begin{aligned}
U_{H} & =\frac{1}{4} \int_{V} \mu_{0} \mu_{r} H_{y}^{2} d V \\
& =\frac{1}{4} h \int_{S} \mu_{0} \mu_{r} H_{y}^{2} d S \\
& =\frac{1}{4} h W \mu_{0} \mu_{r} \int_{-L / 2}^{L / 2} \cos ^{2}\left(\frac{\pi x}{L}\right) d x \\
& =\frac{1}{4} h W \mu_{0} \mu_{r}\left(\frac{L}{2}\right) \\
& =\frac{1}{8}(h W L) \mu_{0} \mu_{r}
\end{aligned}
$$

CAD Formula for $\boldsymbol{Q}_{s p}$ (cont.)

Hence

$$
Q_{s p}=2 \omega_{0}\left(\frac{\frac{1}{8} h W L \mu_{0} \mu_{r}}{P_{s p}}\right)=\frac{2 \omega_{0}\left(\frac{1}{8} h W L\right) \mu_{0} \mu_{r}}{p\left(\frac{2}{\pi} W L\right)^{2}\left(k_{0} h\right)^{2} k_{0}^{2}\left(\frac{\eta_{0}}{6 \pi}\right) \mu_{r}^{2} c_{1}}
$$

Simplify, using $\quad k_{1} L=\pi$

$$
\text { or } \quad k_{0} L \sqrt{\mu_{r} \varepsilon_{r}}=\pi
$$

$$
\text { so } k_{0}=\frac{\pi}{L} \frac{1}{\sqrt{\mu_{r} \varepsilon_{r}}}
$$

Also, use

$$
\omega_{0}=\frac{k_{0}}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}\left(\frac{\pi}{L} \frac{1}{\sqrt{\mu_{r} \varepsilon_{r}}}\right)
$$

This eliminates k_{0} and ω_{0} and leaves only the patch dimensions.

The result is

$$
Q_{s p}=\frac{3 \pi}{8} \varepsilon_{r}\left(\frac{L}{W}\right)\left(\frac{1}{k_{0} h}\right)\left(\frac{1}{c_{1}}\right)\left(\frac{1}{p}\right)
$$

or

$$
\text { Recall : } B W=\frac{1}{\sqrt{2} Q}
$$

$$
\frac{1}{Q_{s p}}=\frac{8}{3 \pi}\left(k_{0} h\right)\left(\frac{W}{L}\right)\left(\frac{1}{\varepsilon_{r}}\right) c_{1} p
$$

$$
\frac{1}{Q}=\frac{1}{Q_{s p}}+\frac{1}{Q_{s w}}+\frac{1}{Q_{c}}+\frac{1}{Q_{d}}
$$

CAD Formula for $\boldsymbol{Q}_{s p}$ (cont.)

Recall that

$$
\begin{aligned}
p \approx 1 & +\frac{a_{2}}{10}\left(k_{0} W\right)^{2} \\
& +\left(a_{2}^{2}+2 a_{4}\right)\left(\frac{3}{560}\right)\left(k_{0} W\right)^{4} \\
& +c_{2}\left(\frac{1}{5}\right)\left(k_{0} L\right)^{2} \\
& +a_{2} c_{2}\left(\frac{1}{70}\right)\left(k_{0} W\right)^{2}\left(k_{0} L\right)^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{2}=-0.16605 \\
& a_{4}=0.00761 \\
& c_{2}=-0.0914153
\end{aligned}
$$

Also, recall that

$$
c_{1}=1-\frac{1}{n_{1}^{2}}+\frac{2 / 5}{n_{1}^{4}}
$$

