ECE 6345
 Spring 2015

Homework 5

1) A rectangular microstrip antenna is printed on a lossless substrate having a substrate relative permittivity $\varepsilon_{r}=2.2$. The aspect ratio of the patch is $W / L=1.5$. The antenna is operated at the resonant frequency (assume that fringing may be ignored, so the length of the patch is one-half of a wavelength in the dielectric). Plot the exact $Q_{\text {sp }}$ versus the normalized substrate thickness h / λ_{0} over the range $0<h / \lambda_{0}<0.1$. On the same graph, add a plot of the CAD result for $Q_{s p}$ (which involves the CAD formula for p). The exact $Q_{s p}$ is based on the exact $P_{s p}$, which comes from the exact power radiated by the equivalent dipole (which involves a single integration in θ) and the exact p factor (which must be found from a double integration in θ and ϕ.
2) Redo the above problem for a substrate relative permittivity of 10.8.
3) Consider the rectangular patch of Prob. 1. Plot the exact directivity (dB) versus the normalized substrate thickness h / λ_{0} over the range $0<h / \lambda_{0}<0.1$. On the same graph, add a plot of the CAD results for the directivity (from a closed-form expression, which uses the CAD formula for p).
4) Redo the previous problem for a substrate relative permittivity of 10.8 .
5) A circular microstrip antenna is printed on a lossless substrate having a substrate relative permittivity $\varepsilon_{r}=2.2$. The antenna is operated at the resonance frequency of the TM_{011} mode. Ignore fringing, so that

$$
a=0.29304 \lambda_{0} / \sqrt{\varepsilon_{r}} .
$$

Plot the exact $Q_{s p}$ versus the normalized substrate thickness h / λ_{0} over the range $0<h / \lambda_{0}<$ 0.1. On the same graph, add a plot of the CAD result for $Q_{s p}$ (which uses the CAD formulas for p and I_{0}). The exact $Q_{s p}$ must be found from a numerical integration in θ.
6) Redo the previous problem for a substrate relative permittivity of 10.8.
7) Consider the circular patch of Prob. 4. Plot the exact directivity (dB) versus the normalized substrate thickness h / λ_{0} over the range $0<h / \lambda_{0}<0.1$. On the same graph, add a plot of the CAD result for the directivity (from a closed-form expression, which uses the CAD formula for p).
8) Repeat the previous problem using a substrate permittivity of 10.8.

