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ECE 6345 
Spring 2015 

 
Homework 6 

 
Do Probs. 1, 2, 3, 4, 5, 8, 9, 10  

 
 

1) A dielectric slab has a relative permittivity εr = 2.2. Plot the normalized wavenumber of the 
TM0 surface-wave mode, βTM0 / k0, versus the normalized thickness of the slab, h/λ0. Plot up 
to a maximum of h/λ0 = 0.1. On the same graph, add a plot of the result from the closed-form 
CAD formula. The exact wavenumber comes from solving the transcendental equation given 
on slide 4 of Notes 21. The CAD formula is given on slide 6 of Notes 21. Solve for enough 
points to make a reasonably smooth plot.  

2) Plot the exact radiation efficiency of an infinitesimal horizontal electric dipole on a lossless 
substrate with a relative permittivity of εr = 2.2, versus the normalized thickness of the 
substrate h/λ0. Plot up to a maximum of h/λ0 = 0.1. The formula for the surface-wave power 
is given on slide 6 of Notes 23. You may calculate the residue of the function ( )TM

i tV k  
numerically in the calculation of the surface-wave power, using a numerical derivative 
(central-difference approximation) of the DTM function, if you wish (see slide 6 of Notes 23). 
Or, you can use the expression given on slide 7 of Notes 23 to calculate the derivative term 
exactly. (You might want to do both and compare as a validation.) Use the exact space-wave 
power in the calculation, found by integrating the Poynting vector (i.e., the formula on slide 5 
of Notes 11).  

On the same graph, add a plot of the radiation efficiency of the dipole obtained by the closed-
form approximate CAD formula for the surface-wave efficiency. This formula is on slide 14 
of Notes 23.  

3) Consider a resonant rectangular patch on a lossless substrate with a relative permittivity εr = 
2.2. The width to length ratio is W / L = 1.5. (Neglect fringing, so that the length is one-half 
wavelength in the dielectric.) The patch current is taken as 
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with x measured from the center of the patch. Plot the exact surface-wave radiation efficiency 
of the patch, and the approximate surface-wave radiation efficiency using the approximate 
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CAD formula for the radiation efficiency of the patch. (The surface-wave efficiency of the 
patch is taken to be the same as that of the dipole in the CAD formula; see slide 2 of Notes 
23). For the exact radiation efficiency of the patch, use the two paths shown on slide 12 of 
Notes 22 to calculate the space-wave power and the total radiated power. Plot versus the 
normalized thickness of the substrate, h/λ0, up to a maximum of h/λ0 = 0.1. (Note: The 
surface-wave radiation efficiency sw

re is the radiation efficiency that accounts only for 
surface-wave loss, and not conductor or dielectric loss.)  

4) A rectangular patch is on a substrate with a relative permittivity εr = 2.2 and a thickness of 
0.1524 cm (corresponding to 60 mils). The width to length ratio is W / L = 1.5. The length of 
the patch is L = 6.255 cm (this gives a resonance frequency of f0 = 1.575 GHz, when using 
the Hammerstad formula). The patch is fed at a distance of 1.85 cm from the edge in the x 
(resonant) direction, and along the centerline of the patch in the y direction. The radius of the 
feed probe is 0.635 mm (corresponding to a standard SMA connector). The loss tangent of 
the dielectric is 0.001. The patch and the ground plane are both made of copper having a 
conductivity of 3.0 ×107 S/m.  

Plot the input impedance of the patch (real and imaginary parts) versus frequency using the 
CAD model (that is, the RLC circuit model that has the probe inductance added in series). 
Use the CAD formulas for the probe inductance, the input resistance, and the Q value. In 
other words, use CAD formulas for everything in the formula for the input impedance, which 
is:  
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Although it should not make too much of a difference one way or the other, use the actual 
physical dimensions of the patch (L and W) in the CAD formula calculations (instead of the 
effective dimensions) to calculate R and Q. (This will keep the calculation simpler since the 
actual dimensions of the patch have already been specified above.) However, note that the 
resonance frequency of the cavity f0 (1.575 GHz) still corresponds to using the effective 
patch length. Plot from 1.53 GHz to 1.63 GHz. For the vertical axis, please plot from -30 to 
70 Ω. 

5) Plot the input impedance for the same patch as in Prob. 4 (real and imaginary parts) versus 
frequency using the transmission line model. Assume an effective loss tangent that accounts 
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for all losses, obtained from the CAD formula for Q (the same total Q found in Prob. 4). 
Include the probe inductance in the calculation, obtained from the CAD formula. Use the 
same plotting scale as in Prob. 4. 

6) Repeat the previous calculation and plot for the same patch as in Prob. 5, now assuming that 
the transmission line has an effective loss tangent that accounts only for dielectric and 
conductor losses, and that edge conductances are added on the ends of the line in order to 
account for radiation losses. Use the same plotting scale as in Prob. 4. 

7) Plot the input impedance of the patch (real and imaginary parts) versus frequency using the 
cavity model with the eigenfunction expansion method. Assume a uniform strip probe 
current model. Use the same plotting scale as in Prob. 4. 

8) Plot the input impedance of the patch (real and imaginary parts) versus frequency using the 
cavity model with the mode-matching method. Again, assume a uniform strip probe current 
model. Use the same plotting scale as in Prob. 4. 

9) Assume a phased array of rectangular microstrip patches is built using a grounded substrate 
having εr = 2.2 and h = 0.1524 cm (corresponding to 60 mils). The frequency is 12 GHz. At 
this frequency the normalized wavenumber of the TM0 surface wave is βTM0 / k0 = 1.0225. 
Assume that the element spacing is 0.75 λ0 in both the x and y directions. Make a Pozar circle 
diagram for this case that applies for either scan blindness or grating lobes. (Because the 
normalized wavenumber of the surface wave is so close to unity, the same diagram should 
apply for both cases.) For ease of plotting, choose a plotting scale so that k0 corresponds to a 
convenient dimension (e.g., 4 cm). Please use a drawing tool (e.g., what is in Word or 
PowerPoint) to make nice circles, so the diagram looks accurate. It is sufficient to draw the 
visible space circle and the four circles that are the nearest neighbors to it.  

10) Use the Pozar circle diagram above to answer the following questions graphically and/or 
exactly, as indicated in each part.  

 What is the maximum scan angle θ0 that one can have in the E plane to avoid both 
scan blindness and grating lobes? Give an exact answer.  

 Assume that one is scanning the main beam at φ0 = 30o. What is the maximum scan 
angle θ0 that one can have in this plane to avoid both scan blindness and grating 
lobes? Give a graphical answer.  
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 Assume that one is scanning the main beam in the plane φ0 = 30o, and that one has 
scanned the beam angle θ0 so that scan blindness occurs. At what angle φ (with 
respect to the x axis) will the surface wave field be adding up in phase along the 
substrate? Give a graphical answer. (For this can calculate the kxp and kyq 
wavenumbers for the Floquet wave of interest that is causing the scan blindness, 
using the graphical solution to first get kx0 and ky0. Note that the graphical solution 
can easily tell you which Floquet wave (i.e., which (p,q) values) is causing the scan 
blindness. Alternatively, you can measure the angle directly from the center of the 
circle corresponding to the Floquet mode of interest (see if you can convince yourself 
of this.)  

 Assume that one is scanning the main beam in the plane φ0 = 120o, and that one has 
scanned the beam angle to θ0 = 60o. At what angles (θg, φg) (in spherical coordinates) 
will a grating beam point? Give an exact answer. (For this you can calculate the exact 
kxp and kyq wavenumbers for the Floquet wave of interest that is causing the grating 
beam, from first calculating kx0 and ky0. Although your answer should be exact, use 
the graphical solution to help you see which Floquet wave is causing the grating 
beam. Alternatively, you can measure the distance and angle directly from the center 
of the circle corresponding to the Floquet mode of interest (see if you can convince 
yourself of this).  

 


