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Sturm-Liouville Theory

Notes are from D. R. Wilton, Dept. of ECE



s We first illustrate Sturm-Liouville theory for solutions to second-
order differential equations.

*» We then apply the theory to matrices (linear algebra).
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A SOLDE has the form

4>
d’y

Po(¥)— +pl(X) +P2(X)y J(x)

If f(x)=0,the equationis said to be "homogeneous".

The inhomogeneous equation can be solved once we know the solution to the
homogeneous equation using the method of Green's functions (discussed later).

Boundary conditions (BC) are usually of the form

y(a)=y(b)=0 (Dirichlet)
y'(a)=y'(b)=0 (Neumann)



o If we multiply the general differential equation
Po(X)y"+p (x)y"+ p,(x)y = f(x)

J‘Xpl(t)dt
po(?)
by the integrating factor w(x)=— we have:
Po(x)
J‘xpl(f) gt ) X I Pl()
e 0y B 0wy = w) £(x)

Po (x)

dx

2
:—d[ej po(t) y’]+p2(x)W(X)y = w(x) f(x)

o Dividing this result by w(x) yields

1 dy(X)
w(x) dx[ (x)

} +O(x)y(x) = f(x)

x py(1) &

where P(x) = e " | O(x)= p,(x)




This is called the Sturm-Liouville or self-adjoint form of the
differential equation:

1
w(x) dx

dy(x)

{P( ) } +O(x)y(x) = f(x)

or (using u instead of y):

Lu=f

Where L is the (self-adjoint*) “Sturm-Liouville” operator:

* Discussed later

— 1 et
[ W(x)dx{”) }Q(x)

Note:
The operator £ is assumed to be real here (w, P, O are real). The solution u

does not have to be real (because f'is allowed to be complex).




An inner product between two functions is defined:

o We define aninner product as
b
<u,v> = Iu(x) Vv (x) w(x)dx

where w(x) is called a weight function.

o Although the weight functionis arbitrary, we will choose it to be
the same as the integrating function w(x) in the Sturm-Liouville equation.
This will give us the nice "self - adjoint" properties, as we will see.



The adjoint operator LT is defined from

<Luv>= <u,lLv>

For the Sturm-Liouville operator < Lu,v> = <u,Lv> so L =L.

(proof given next)

Hence, the Sturm-Liouville operator is said to be self-adjoint:

1
w(x) dx

L=L= {P( )—}Q(x)

Note:
Self-adjoint operators have nice properties for eigenvalue problems,
which is discussed a little later.




o Consider the inner product between the two functions Lu andv:

b b
<Luyv> = JV*(X) w(x)ﬁu(x)dx Recall: <u,v > Elu(x)v*(x)w(x)dx

= [v (x)w(x){— W(lx) ;i (P(x) %j + Q(x)} w(x)dx

:zv*(x){_%(])(x)%)+Q(x)w(x)}u(x)dx

The first term inside the square brackets is first integrated by parts, twice :

—I v 00 P - v open 1) ‘ a [P( |00

dx dx

_ [V (¥)P(x) duix)} ‘ J‘[P( )dv (x)jdp;(x)

X

b

. {—v* ()P() d”;ix) + P(x )d" ) u(x)}

| u(x)—{P( & (’“)}



Hence, we have:

b

<Lu,v> {—V*(x)P(x) d‘;(x) + P(x )d" (%) (x)}

X

j (e )—{P(x) dv (x)}

+ j‘ V' (x)Q(x)u(x)w(x) dx

Multiply and divide by w(x), combine with last term.

or

b

<Lu,v> = {—v (x)P(x) du(x) + P(x )dv (x) (x)}
dx

+ j[u(x) w(x) {—%%[P(x) %} +Q(x)}*(x)dx



b

<Luyv> = {—v (x)P(x) d”(x) + P (x)u(x)}

a

+ ju(x){ o dx[ <>—}+Q<x>}v<x> w(x)dx

This can thus be written as: \
b Note:
<Lu,y> = + <u,Lv> «—— /(v
(ﬁ = real operator)
where

J(u,v)EP(x)( V(%) d”(x) dv. (x) u(x)j

From boundary conditions we have: J(u,v) ‘b —0 yf(él))= y('lzl)))= 00 ((t;iricmet) |
a ya)=y = eumann

|:> <Lu,v> =J.u(x)(£v(x))* w(x)dx = <u,Lv> (proof complete)
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We often encounter an eigenvalue problem of the form
Lu=Au

(The operator £ can be the Sturm-Liouville operator, or any other operator here.)

** The eigenvalue problem (with boundary conditions) is usually only satisfied
for specific eigenvalues:

A=A1. n=12 u(a)=u(b)=0 (Dirichlet)
n?o 9 Lo o o u;(a):ul(b)zo (Neumann)

“ For each distinct eigenvalue, there corresponds an eigenfunction u = u,
that satisfies the eigenvalue equation.
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Property 1
The eigenvalues corresponding to a self-adjoint operator are real.

Proof:

Lu=Au

b Lu=Au
= j(ﬁu u wdx = ijuu wdx N (Lu)*zi*u*

’ b
e <£u,u>—/1<u u> = j Lu “uwdx = A ju uwdx
= <u,£Tu>=/1<u u> e

<u £u> /1<u u> = <u,£u>: <u,u>

Hence: 4 =1

(proof complete) ,



Property 2

The eigenfunctions corresponding to a self-adjoint operator
equation are orthogonal” if the eigenvalues are distinct.

*Orthogonal means that

Consider two different solutions of the eigenvalue problem
corresponding to distinct eigenvalues:

Lu =Au, Lu =Au
A #A
, v g
jﬁum w wdx = A (Lu, )* u wdx = l:ju: u, wdx

*
u u wdx

m

\ Subtract /

j{((ﬁum)u: —u, (Lu, )*) wdx

Q e >~
Q) >~

Il
—_
N
I

N%

N—~—"

Q ey >~

<

3

<

S %
=

S

the inner product is zero.
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The LHS is:
b
J.((ﬁum)uz —u_ (Lun)*)wdx =<Lu ,u >—<u ,Lu >

=<u,,L'u >—<u, Lu, > (fromthe definition of adjoint)
= <u, ,Lu >—<u ,Lu > (fromthe self - adjoint property)

=0

Hence, for the RHS we have

b
uu wdi=0 = Iumu: wdx =0 (orthogonality)

a

(47

Qe >

since L. =4, A #A

(proof complete)
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Assume an eigenvalue problem with a self-adjoint operator:

Lu=Au, L=L
!

<Luyv>= <u,Lv>

Then we have:

*» The eigenvalues are real.

*»The eigenfunctions corresponding to distinct eigenvalues are orthogonal.

That is,

b
b) <um,un>=ju u wdx=0, A #1
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Orthogonality of Bessel functions

Derive this identity:

1
jJ PoX)J, (D, x)xdx=0, m#n
0

p,,, =m" rootof J, (x)

p,, =n"rootof J, (x)
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Recall:

u, (x)u: (x)w(x)dx=0 (foraSturm-Liouville problem)

Qe

if u,, (a)=u,,(b)=0 (Dirchletboundary conditions)

Consider: u, (x)=J, (p,.x), u,(x)=J, (p,x)

Choose: a=0,b=1
J, (pw.O):O, J, (pw.l)zO (izm,n)

(The first equationis true for v # 0. The case v =0 can be considered as a limiting case.)

1
—> jJV (ponx)J, (P, x)W(x)dx=0, m#n  Whatis w(x)?
0

(This will be true if if u,, and u, correspond to a Sturm-Liouville eigenvalue problem.)
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.(i;”m (x)u, (x)w(x)dx=0, m=n

(10 ()=, (Pox), 0, (%)=, (p))

This orthogonality will be true if if u,, and u, correspond to a Sturm-
Liouville eigenvalue problem, with the associated function w(x).

What is w(x)?

We need to identify the appropriate Sturm-Liouville eigenvalue problem that u(x)
satisfies:

1 [ (x )du(x)

w(x) - } +O0(x)u(x) = Au

18



Bessel equation: #*y" +# +(z‘2 —Vz)y =0, y(1)=J,(¢)

Use:
t=p,x, dt=p, dx

o 1 0
—> = y (t) is then denoted as u (x)
ot p, Ox

(u(x):ui(x)sz (pw.x), i=1,2)

Note:
xu'" + xu' + (pz.x2 —? )u =0 The primes now mean
Vi differentiating with
respect to x.
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Rearrange to put into Sturm-Liouville eigenvalue form:

1 v’
u'+—u+| pl—— u=0
X X

20



Hence, we have:

2
(_ld[x;i}vzju:ﬁ”’ u=J,(p,x), A=p;

X dx X

Compare with our standard Sturm-Liouville eigenvalue form:

1
( ) dx[ ()—}+Q(x)ju—/1u

We can now see that the u(x) functions come from a Sturm-Liouville
problem, and we can identify:

w(x)=x. P(x)=x. 0(x)="

X
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Hence, we have:
u, (x)u, (x)w(x)dx =0

U

1
_[J PoX)J, (P, x)xdx=0, m#n
0

Q e O~

where J, (pw.) =0 (pw. = i" root of Bessel function JV)
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An inner product between two vectors is defined as:

(a,by=a-b"=> ab (Thereis no “weight” function here.)

An adjoint of a square complex matrix [4] is defined from:

<Au,v> =<u,ATv>

Self-adjoint means:

A=A"
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Theorem For a complex square matrix [4], the adjoint is given by

| 4" |=[ 4" (i.e.,the conjugate of the transpose)

Proof - Note: [A”] E|:At*:| (the Hermetian transpose)

To show this, we need to show :
<Au,v> =<u,At*v>
a- é* — Zaibi*

I

where (a,b)

To show this:

(Au,v) = ZZ( )V = 224,
<M,At > ZZ“( i J) ZZulAﬂv —ZZu Vi relabelingiandj)
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For a complex matrix we have established that
|47 )=[47]

Therefore, if a complex matrix is self-adjoint, this means that:

[4]=[4"]=[ 4" ]

(The matrix is then also called Hermetian.)

Note: For a real matrix, self-adjoint means that the matrix is symmetric.
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Because a Hermetian matrix is self-adjoint, we have the following properties:

* The eigenvalues of a Hermetian matrix are real.

% The eigenvectors of a Hermetian matrix corresponding to distinct
eigenvalues are orthogonal.

“* The eigenvectors of a Hermetian matrix corresponding to the same
eigenvalue can be chosen to be orthogonal (proof omitted).

For a real matrix, these properties apply to a symmetric matrix.
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If the eigenvectors of an NxN matrix [4] are linearly independent,
the matrix can be “diagonalized” as follows:

[A]: [e][ D] [e]_1 (proof on next slide)

ﬂ.1 0O 0 O €, €y €N
0 A4 0 0 e e o e
Dl= 2 _ _| "2 22 2N
L) N (1Y N Y I O 0 1
|00 0 4] € €y €N |
_eln_
le,]= |t g ' i
A= 0= genvector(acolumnvector)correspondlngtoelgenvalueln
_eNn
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Proof of diagonalization property:
[e][D] = [ A, [el] A, [62] e Ay [eN] ] (from properties of a diagonal matrix )

[A][e]= [ Ale] Ale] - Ayley] } (from properties of eigenvectors)

(Please see next slide.)
Hence, we have

[4][e]=[e][D]

so that

Note:

-1

[A] = [e] [D] [e] The inverse will exist since the columns of the
matrix [e] are linearly independent, by assumption.
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[e] [D] = [ A [el] A, :ez] e Ay [eN] } (from properties of a diagonal matrix)
_en €, €53 614_ _il 0 0 0] _ﬂ’lell e, Ae, 13614_
e €, &, e,10 4 0 0 Aey, Ae, Ae, e
Jipl=| 2 2 G ) _ 21 hln 23 4| _ el alel 1lel Ale
[ ][ ] e e e e,|l0 0 A4 0 hey  Ae, Aey Aey, [A[ 1] 2[ 2] 2[ 2] 4[ 4]]
ey ey €5 e,|0 0 0 A,] _2'1641 ey, ey 23644_

[A][e: = [ A [31] A, [ez] e Ay [eNH (from properties of eigenvectors)

4, 4, A4, A,||e e, e; e,
A, A A, A e, e, e, e

y _| A= 2» 23 u || 2 Cs G| 1 y _

[ ][e] A, A, A, A, e, e, e, e, [ [el] [ez] A[e3] A4[e4]] [11[@1] lz[ez] )‘3[33] /14[64H
L Ay A, As Ay, L€ € €43 €y

Note: We visualize here for a 4x4 matrix.
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If the matrix [4] is Hermetian (self-adjoint), then the eigenvectors are
orthogonal, and hence linearly independent. We then have

[4]=[e][D][e]

A Hermetian matrix is always diagonalizable!

If the eigenvectors are scaled so that they have unit magnitude,
then we also have:

[M]E[et*][e] =[] (identitymatrix)

This follows from the orthogonality property of the eigenvectors:

*

[M] e, = 0 (m % n) (The m" row of [M] is the transpose of efn.)

:e-
mn —mn

Note: For the diagonal elements, [M],, = 1 if the eigenvectors have been scaled so that

e

—m

e, =1
30



Hence, for a Hermetian matrix with scaled (unit-magnitude)
eigenvectors we then have:

[e]_1 :[et*} (the eigenvalue matrix is "unitary")

Therefore, for a Hermetian (self-adjoint) matrix with scaled
(unit-magnitude) eigenvectors we have:

[4]=[e][P] [ ¢ ]
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