$\mathcal{L} u=\lambda u$

ECE 6382

Fall 2023
David R. Jackson

Notes 18

Sturm-Liouville Theory

Notes are from D. R. Wilton, Dept. of ECE

Sturm-Liouville Theory

* We first illustrate Sturm-Liouville theory for solutions to secondorder differential equations.
* We then apply the theory to matrices (linear algebra).

Jacques Charles François Sturm

Joseph Liouville

Second-Order Linear Differential Equations (SOLDE)

- A SOLDE has the form

$$
p_{0}(x) \frac{d^{2} y}{d x^{2}}+p_{1}(x) \frac{d y}{d x}+p_{2}(x) y=f(x)
$$

- If $f(x)=0$, the equation is said to be "homogeneous".
- The inhomogeneous equation can be solved once we know the solution to the homogeneous equation using the method of Green's functions (discussed later).
- Boundary conditions (BC) are usually of the form

$$
\begin{aligned}
& y(a)=y(b)=0 \quad \text { (Dirichlet) } \\
& y^{\prime}(a)=y^{\prime}(b)=0 \quad \text { (Neumann) }
\end{aligned}
$$

Sturm-Liouville Form

- If we multiply the general differential equation

$$
p_{0}(x) y^{\prime \prime}+p_{1}(x) y^{\prime}+p_{2}(x) y=f(x)
$$

by the integrating factor $w(x)=-\frac{e^{\int^{x} \frac{p_{1}(t)}{p_{0}(t)} d t}}{p_{0}(x)}$ we have :

$$
\begin{aligned}
& -e^{\int^{x} \frac{p_{1}(t)}{p_{0}(t)} d t} y^{\prime \prime}-\frac{p_{1}(x)}{p_{0}(x)} e^{\int^{x} \frac{p_{1}(t)}{p_{0}(t)} d t} y^{\prime}+p_{2}(x) w(x) y=w(x) f(x) \\
& \Rightarrow-\frac{d}{d x}\left(e^{\int^{x} \frac{p_{1}(t)}{p_{0}(t)} d t} y^{\prime}\right)+p_{2}(x) w(x) y=w(x) f(x)
\end{aligned}
$$

- Dividing this result by $w(x)$ yields

$$
-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d y(x)}{d x}\right]+Q(x) y(x)=f(x)
$$

where $\quad P(x) \equiv e^{\int^{x} \frac{p_{1}(t)}{p_{0}(t)} d t}, Q(x) \equiv p_{2}(x)$

Sturm-Liouville Operator

This is called the Sturm-Liouville or self-adjoint form of the differential equation:

$$
-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d y(x)}{d x}\right]+Q(x) y(x)=f(x)
$$

or (using u instead of y):

$$
\mathcal{L} u=f
$$

Where \mathcal{L} is the (self-adjoint*) "Sturm-Liouville" operator:

$$
\mathcal{L} \equiv-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d}{d x}\right]+Q(x)
$$

Note:

The operator \mathcal{L} is assumed to be real here (w, P, Q are real). The solution u does not have to be real (because f is allowed to be complex).

Inner Product Definition

An inner product between two functions is defined:

- We define an inner product as

$$
<u, v>\equiv \int_{a}^{b} u(x) v^{*}(x) w(x) d x
$$

where $w(x)$ is called a weight function.

- Although the weight function is arbitrary, we will choose it to be the same as the integrating function $w(x)$ in the Sturm-Liouville equation. This will give us the nice "self -adjoint" properties, as we will see.

The adjoint operator \mathcal{L}^{\dagger} is defined from

$$
<\mathcal{L} u, v>=<u, \mathcal{L}^{\dagger} v>
$$

For the Sturm-Liouville operator $\langle\mathcal{L} u, v\rangle=\langle u, \mathcal{L} v\rangle$ so $\mathcal{L}^{\dagger}=\mathcal{L}$. (proof given next)

Hence, the Sturm-Liouville operator is said to be self-adjoint:

$$
\mathcal{L}=\mathcal{L}^{\dagger}=-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d}{d x}\right]+Q(x)
$$

Note:

Self-adjoint operators have nice properties for eigenvalue problems, which is discussed a little later.

Proof of Self-Adjoint Property

- Consider the inner product between the two functions $\mathcal{L} u$ and v :

$$
\begin{aligned}
\langle\mathcal{L} u, v\rangle= & \int_{a}^{b} v^{*}(x) w(x) \mathcal{L} u(x) d x \\
& =\int_{a}^{b} v^{*}(x) w(x)\left[-\frac{1}{w(x)} \frac{d}{d x}\left(P(x) \frac{d}{d x}\right)+Q(x)\right] u(x) d x \\
& =\int_{a}^{b} v^{*}(x)\left[-\frac{d}{d x}\left(P(x) \frac{d}{d x}\right)+Q(x) w(x)\right] u(x) d x
\end{aligned}
$$

The first term inside the square brackets is first integrated by parts, twice :

$$
\begin{aligned}
&-\int_{a}^{b} v^{*}(x) \frac{d}{d x}\left[P(x) \frac{d u(x)}{d x}\right] d x=-\left.\left[v^{*}(x) P(x) \frac{d u(x)}{d x}\right]\right|_{a} ^{b}+\int_{a}^{b}\left(P(x) \frac{d u(x)}{d x}\right) \frac{d v^{*}(x)}{d x} d x \\
&=-\left.\left[v^{*}(x) P(x) \frac{d u(x)}{d x}\right]\right|_{a} ^{b}+\int_{a}^{b}\left(P(x) \frac{d v^{*}(x)}{d x}\right) \frac{d u(x)}{d x} d x \\
&=\left.\left[-v^{*}(x) P(x) \frac{d u(x)}{d x}+P(x) \frac{d v^{*}(x)}{d x} u(x)\right]\right|_{a} ^{b}-\int_{a}^{b} u(x) \frac{d}{d x}\left[P(x) \frac{d v^{*}(x)}{d x}\right] d x
\end{aligned}
$$

Proof of Self-Adjoint Property (cont.)

Hence, we have:

$$
\begin{gathered}
<\mathcal{L} u, v>=\left.\left[-v^{*}(x) P(x) \frac{d u(x)}{d x}+P(x) \frac{d v^{*}(x)}{d x} u(x)\right]\right|_{a} ^{b}-\int_{a}^{b} u(x) \frac{d}{d x}\left[P(x) \frac{d v^{*}(x)}{d x}\right] d x \\
+\int_{a}^{b} v^{*}(x) Q(x) u(x) w(x) d x
\end{gathered}
$$

Multiply and divide by $w(x)$, combine with last term.
or

$$
\begin{aligned}
<\mathcal{L} u, v>= & {\left.\left[-v^{*}(x) P(x) \frac{d u(x)}{d x}+P(x) \frac{d v^{*}(x)}{d x} u(x)\right]\right|_{a} ^{b} } \\
& +\int_{a}^{b} u(x) w(x)\left[-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d}{d x}\right]+Q(x)\right] v^{*}(x) d x
\end{aligned}
$$

Proof of Self-Adjoint Property (cont.)

$$
\begin{aligned}
\langle\mathcal{L} u, v\rangle= & {\left.\left[-v^{*}(x) P(x) \frac{d u(x)}{d x}+P(x) \frac{d v^{*}(x)}{d x} u(x)\right]\right|_{a} ^{b} } \\
& +\int_{a}^{b} u(x)\left[-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d}{d x}\right]+Q(x)\right] v^{*}(x) w(x) d x
\end{aligned}
$$

Note:

$$
<\mathcal{L} u, v>=\left.J(u, v)\right|_{a} ^{b}+<u, \mathcal{L} v>\longleftarrow
$$

$$
\mathcal{L} v^{*}=(\mathcal{L} v)^{*}
$$

where

$$
(\mathcal{L}=\text { real operator })
$$

$$
J(u, v) \equiv P(x)\left(-v^{*}(x) \frac{d u(x)}{d x}+\frac{d v^{*}(x)}{d x} u(x)\right)
$$

From boundary conditions we have: $\left.J(u, v)\right|^{b}=0 \quad y(a)=y(b)=0$ (Dirichlet)

$$
y^{\prime}(a)=y^{\prime}(b)=0 \quad \text { (Neumann) }
$$

$$
\square<\mathcal{L} u, v>=\int_{a}^{b} u(x)(\mathcal{L} v(x))^{*} w(x) d x=<u, \mathcal{L} v>\quad \text { (proof complete) }
$$

Eigenvalue Problems

We often encounter an eigenvalue problem of the form

$$
\mathcal{L} u=\lambda u
$$

(The operator \mathcal{L} can be the Sturm-Liouville operator, or any other operator here.)

* The eigenvalue problem (with boundary conditions) is usually only satisfied for specific eigenvalues:

$$
\lambda=\lambda_{n}, n=1,2, \ldots . l l \begin{array}{ll}
u(a)=u(b)=0 \quad \text { (Dirichlet) } \\
u^{\prime}(a)=u^{\prime}(b)=0 \text { (Neumann) }
\end{array}
$$

*For each distinct eigenvalue, there corresponds an eigenfunction $u=u_{n}$ that satisfies the eigenvalue equation.

Property of Eigenvalues

Property 1

The eigenvalues corresponding to a self-adjoint operator are real.

Proof:

$$
\begin{aligned}
& \mathcal{L} u=\lambda u \\
\Rightarrow & \int_{a}^{b}(\mathcal{L} u) u^{*} w d x=\lambda \int_{a}^{b} u u^{*} w d x \\
\Rightarrow & \langle\mathcal{L} u, u\rangle=\lambda\langle u, u\rangle \\
\Rightarrow & \left\langle u, \mathcal{L}^{\dagger} u\right\rangle=\lambda\langle u, u\rangle \\
\Rightarrow & \langle u, \mathcal{L} u\rangle=\lambda\langle u, u\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L} u=\lambda u \\
& \Rightarrow(\mathcal{L} u)^{*}=\lambda^{*} u^{*} \\
& \Rightarrow \int_{a}^{b}(\mathcal{L} u)^{*} u w d x=\lambda^{*} \int_{a}^{b} u^{*} u w d x \\
& \Rightarrow\langle u, \mathcal{L} u\rangle=\lambda^{*}\langle u, u\rangle
\end{aligned}
$$

Hence: $\quad \lambda=\lambda^{*}$

Orthogonality of Eigenfunctions

Property 2

The eigenfunctions corresponding to a self-adjoint operator equation are orthogonal* if the eigenvalues are distinct.
*Orthogonal means that
Consider two different solutions of the eigenvalue problem corresponding to distinct eigenvalues:

$$
\underbrace{\int_{a}^{b} \mathcal{L} u_{m} u_{n}^{*} w d x=\lambda_{m} \int_{a}^{b} u_{m} u_{n}^{*} w d x \quad \mathcal{L} u_{n}=\lambda_{n} u_{n}}_{\text {L } L_{m}=\lambda_{m} u_{m}}
$$

The LHS is:

$$
\begin{aligned}
\int_{a}^{b}\left(\left(\mathcal{L} u_{m}\right) u_{n}^{*}-u_{m}\left(\mathcal{L} u_{n}\right)^{*}\right) w d x & =<\mathcal{L} u_{m}, u_{n}>-<u_{m}, \mathcal{L} u_{n}> \\
& =<u_{m}, \mathcal{L}^{\dagger} u_{n}>-<u_{m}, \mathcal{L} u_{n}>\text { (from the definition of adjoint) } \\
& =<u_{m}, \mathcal{L} u_{n}>-<u_{m}, \mathcal{L} u_{n}>\text { (from the self - adjoint property) } \\
& =0
\end{aligned}
$$

Hence, for the RHS we have

$$
\begin{gathered}
\left(\lambda_{m}-\lambda_{n}^{*}\right) \int_{a}^{b} u_{m} u_{n}^{*} w d x=0 \Rightarrow \int_{a}^{b} u_{m} u_{n}^{*} w d x=0 \text { (orthogonality) } \\
\text { since } \lambda_{n}^{*}=\lambda_{n}, \quad \lambda_{m} \neq \lambda_{n}
\end{gathered}
$$

Summary of Eigenvalue Properties

Assume an eigenvalue problem with a self-adjoint operator:

$$
\begin{aligned}
& \mathcal{L} u=\lambda u, \quad \mathcal{L}= \mathcal{L}^{\dagger} \\
& \downarrow \\
&<\mathcal{L} u, v>=\langle u, \mathcal{L} v>
\end{aligned}
$$

Then we have:

* The eigenvalues are real.
*The eigenfunctions corresponding to distinct eigenvalues are orthogonal.

That is,
a) $\lambda_{m}^{*}=\lambda_{m}$
b) $\left\langle u_{m}, u_{n}\right\rangle=\int_{a}^{b} u_{m} u_{n}^{*} w d x=0, \quad \lambda_{m} \neq \lambda_{n}$

Example

Orthogonality of Bessel functions

Derive this identity:

$$
\begin{gathered}
\int_{0}^{1} J_{v}\left(p_{v m} x\right) J_{v}\left(p_{v n} x\right) x d x=0, \quad m \neq n \\
p_{v m}=m^{\text {th }} \text { root of } J_{v}(x) \\
p_{v n}=n^{\text {th }} \text { root of } J_{v}(x)
\end{gathered}
$$

Example (cont.)

Recall:

$$
\begin{array}{ll}
\int_{a}^{b} u_{m}(x) u_{n}^{*}(x) w(x) d x=0 & \text { (for a Sturm-Liouville problem) } \\
\text { if } u_{m, n}(a)=u_{m, n}(b)=0 \quad \text { (Dirchlet boundary conditions) }
\end{array}
$$

Consider: $\quad u_{m}(x)=J_{v}\left(p_{v m} x\right), \quad u_{n}(x)=J_{v}\left(p_{v n} x\right)$
Choose: $\quad a=0, b=1$

$$
J_{v}\left(p_{v i} 0\right)=0, \quad J_{v}\left(p_{v i} 1\right)=0 \quad(i=m, n)
$$

(The first equation is true for $v \neq 0$. The case $v=0$ can be considered as a limiting case.)

$$
\square \quad \int_{0}^{1} J_{v}\left(p_{v m} x\right) J_{v}\left(p_{v n} x\right) w(x) d x=0, \quad m \neq n \quad \text { What is } w(x) ?
$$

(This will be true if if u_{m} and u_{n} correspond to a Sturm-Liouville eigenvalue problem.)

Example (cont.)

$$
\begin{aligned}
& \int_{0}^{1} u_{m}(x) u_{n}(x) w(x) d x=0, \quad m \neq n \\
& \left(u_{m}(x)=J_{v}\left(p_{v m} x\right), \quad u_{n}(x)=J_{v}\left(p_{v n} x\right)\right)
\end{aligned}
$$

This orthogonality will be true if if u_{m} and u_{n} correspond to a SturmLiouville eigenvalue problem, with the associated function $w(x)$.

What is $w(x) ?$
We need to identify the appropriate Sturm-Liouville eigenvalue problem that $u(x)$ satisfies:

$$
-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d u(x)}{d x}\right]+Q(x) u(x)=\lambda u
$$

Example (cont.)

Bessel equation: $t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-v^{2}\right) y=0, \quad y(t)=J_{v}(t)$

Use:

$$
\begin{aligned}
t= & p_{v i} x, \quad d t=p_{v i} d x \\
& \Rightarrow \frac{\partial}{\partial t}=\frac{1}{p_{v i}} \frac{\partial}{\partial x} \quad \begin{array}{l}
y(t) \text { is then denoted as } u(x) \\
\\
\end{array} \quad\left(u(x)=u_{i}(x)=J_{v}\left(p_{v i} x\right), i=1,2\right)
\end{aligned}
$$

$x^{2} u^{\prime \prime}+x u^{\prime}+\left(p_{v i}^{2} x^{2}-v^{2}\right) u=0$

Note:

The primes now mean differentiating with respect to x.

Example (cont.)

Rearrange to put into Sturm-Liouville eigenvalue form:

$$
\begin{gathered}
u^{\prime \prime}+\frac{1}{x} u+\left(p_{v i}^{2}-\frac{v^{2}}{x^{2}}\right) u=0 \\
-u^{\prime \prime}-\frac{1}{x} u^{\prime}+\left(\frac{v^{2}}{x^{2}}\right) u=p_{v i}^{2} u \\
-u^{\prime \prime}-\frac{1}{x} u^{\prime}+\left(\frac{v^{2}}{x^{2}}\right) u=\lambda u, \quad u(x) \equiv J_{v}\left(p_{v i} x\right), \quad \lambda \equiv p_{v i}^{2} \\
\left(-\frac{1}{x} \frac{d}{d x}\left[x \frac{d}{d x}\right]+\frac{v^{2}}{x^{2}}\right) u=\lambda u
\end{gathered}
$$

Example (cont.)

Hence, we have:

$$
\left(-\frac{1}{x} \frac{d}{d x}\left[x \frac{d}{d x}\right]+\frac{v^{2}}{x^{2}}\right) u=\lambda u, \quad u \equiv J_{v}\left(p_{v i} x\right), \quad \lambda \equiv p_{v i}^{2}
$$

Compare with our standard Sturm-Liouville eigenvalue form:

$$
\left(-\frac{1}{w(x)} \frac{d}{d x}\left[P(x) \frac{d}{d x}\right]+Q(x)\right) u=\lambda u
$$

We can now see that the $u(x)$ functions come from a Sturm-Liouville problem, and we can identify:

$$
w(x)=x, \quad P(x)=x, \quad Q(x)=\frac{v^{2}}{x^{2}}
$$

Example (cont.)

Hence, we have:

$$
\int_{a}^{b} u_{m}(x) u_{n}^{*}(x) w(x) d x=0
$$

$$
\int_{0}^{1} J_{v}\left(p_{v m} x\right) J_{v}\left(p_{v n} x\right) x d x=0, \quad m \neq n
$$

where $J_{v}\left(p_{v i}\right)=0 \quad\left(p_{v i}=i^{\text {th }}\right.$ root of Bessel function $\left.J_{v}\right)$

Adjoint in Linear Algebra

An inner product between two vectors is defined as:

$$
\langle a, b\rangle \equiv \underline{a} \cdot \underline{b}^{*}=\sum_{i} a_{i} b_{i}^{*} \quad \text { (There is no "weight" function here.) }
$$

An adjoint of a square complex matrix $[A]$ is defined from:

$$
\langle A u, v\rangle=\left\langle u, A^{\dagger} v\right\rangle
$$

Self-adjoint means:

$$
A=A^{\dagger}
$$

Adjoint in Linear Algebra (cont.)

Theorem For a complex square matrix [A], the adjoint is given by

$$
\left[A^{\dagger}\right]=\left[A^{* *}\right] \text { (i.e., the conjugate of the transpose) }
$$

Proof :

Note: $\left[A^{H}\right] \equiv\left[A^{*}\right] \quad$ (the Hermetian transpose)
To show this, we need to show :

$$
\langle A u, v\rangle=\left\langle u, A^{*^{*}} v\right\rangle
$$

where $\langle a, b\rangle=\underline{a} \cdot \underline{b}^{*}=\sum_{i} a_{i} b_{i}^{*}$
To show this:

$$
\begin{aligned}
& \langle A u, v\rangle=\sum_{i} \sum_{j}\left(A_{i j} u_{j}\right) v_{i}^{*}=\sum_{i} \sum_{j} u_{j} A_{i j} v_{i}^{*} \\
& \left\langle u, A^{t^{*}} v\right\rangle=\sum_{i} \sum_{j} u_{i}\left(A_{i j}^{t} v_{j}^{*}\right)=\sum_{i} \sum_{j} u_{i} A_{j i} v_{j}^{*}=\sum_{i} \sum_{j} u_{j} A_{i j} v_{i}^{*} \quad(\text { relabeling } i \text { and } j)
\end{aligned}
$$

Adjoint in Linear Algebra (cont.)

For a complex matrix we have established that

$$
\left[A^{\dagger}\right]=\left[A^{*}\right]
$$

Therefore, if a complex matrix is self-adjoint, this means that:

$$
[A]=\left[A^{t^{*}}\right]=\left[A^{H}\right]
$$

(The matrix is then also called Hermetian.)

Note: For a real matrix, self-adjoint means that the matrix is symmetric.

Orthogonality in Linear Algebra

Because a Hermetian matrix is self-adjoint, we have the following properties:

* The eigenvalues of a Hermetian matrix are real.
* The eigenvectors of a Hermetian matrix corresponding to distinct eigenvalues are orthogonal.
* The eigenvectors of a Hermetian matrix corresponding to the same eigenvalue can be chosen to be orthogonal (proof omitted).

For a real matrix, these properties apply to a symmetric matrix.

Diagonalizing a Matrix

If the eigenvectors of an $N \times N$ matrix [A] are linearly independent, the matrix can be "diagonalized" as follows:

$$
[A]=[e][D][e]^{-1} \quad(\text { proof on next slide })
$$

$$
\begin{gathered}
{[D]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \lambda_{N}
\end{array}\right] \quad[e]=\left[\left[e_{1}\right] \quad\left[e_{2}\right] \quad[\cdots] \quad\left[e_{N}\right]\right]=\left[\begin{array}{cccc}
e_{11} & e_{12} & \cdots & e_{1 N} \\
e_{21} & e_{22} & \cdots & e_{2 N} \\
e_{31} & e_{32} & \cdots & e_{3 N} \\
e_{41} & e_{42} & \cdots & e_{4 N}
\end{array}\right]} \\
{\left[e_{n}\right]=\left[\begin{array}{c}
e_{1 n} \\
e_{2 n} \\
\vdots \\
e_{N n}
\end{array}\right]=n^{\text {th }} \text { eigenvector (a column vector) corresponding to eigenvalue } \lambda_{n}}
\end{gathered}
$$

Diagonalizing a Matrix (cont.)

Proof of diagonalization property:

$$
\begin{array}{ll}
{[e][D]=\left[\begin{array}{llll}
\lambda_{1}\left[e_{1}\right] & \lambda_{2}\left[e_{2}\right] & \cdots & \left.\lambda_{N}\left[e_{N}\right]\right]
\end{array}\right.} & \text { (from properties of a diagonal matrix) } \\
{[A][e]=\left[\begin{array}{llll}
\lambda_{1}\left[e_{1}\right] & \lambda_{2}\left[e_{2}\right] & \left.\cdots \lambda_{N}\left[e_{N}\right]\right] & \text { (from properties of eigenvectors) }
\end{array}\right.}
\end{array}
$$

(Please see next slide.)
Hence, we have

$$
[A][e]=[e][D]
$$

so that

$$
[A]=[e][D][e]^{-1}
$$

Note:

The inverse will exist since the columns of the matrix [e] are linearly independent, by assumption.

Diagonalizing a Matrix (cont.)

$$
\left.\begin{array}{rl}
{[e][D]} & =\left[\begin{array}{lll}
\lambda_{1}\left[e_{1}\right] & \lambda_{2}
\end{array} e_{2}\right] \cdots
\end{array} \cdots \lambda_{N}\left[e_{N}\right]\right] \quad \text { (from properties of a diagonal matrix) }
$$

$$
\left.\begin{array}{l}
{[A][e]=\left[\begin{array}{llll}
\lambda_{1} & \left.e_{1}\right] & \lambda_{2} & \left.e_{2}\right]
\end{array} \cdots\right.} \\
\cdots
\end{array} \lambda_{N}\left[e_{N}\right]\right] \text { (from properties of eigenvectors) }
$$

Note: We visualize here for a 4×4 matrix.

Diagonalizing a Matrix (cont.)

If the matrix $[A]$ is Hermetian (self-adjoint), then the eigenvectors are orthogonal, and hence linearly independent. We then have

$$
[A]=[e][D][e]^{-1}
$$

A Hermetian matrix is always diagonalizable!

If the eigenvectors are scaled so that they have unit magnitude, then we also have:

$$
[M] \equiv\left[e^{t^{*}}\right][e]=[I] \text { (identity matrix) }
$$

This follows from the orthogonality property of the eigenvectors:

$$
[M]_{m n}=\underline{e}_{m}^{*} \cdot e_{n}=0 \quad(m \neq n) \quad\left(\text { The } m^{n \prime} \text { row of }[M] \text { is the transpose of } e_{m}^{*}\right)
$$

Note: For the diagonal elements, $[M]_{m m}=1$ if the eigenvectors have been scaled so that

$$
\underline{e}_{n}^{*} \cdot \underline{e}_{n}=1
$$

Diagonalizing a Matrix (cont.)

Hence, for a Hermetian matrix with scaled (unit-magnitude) eigenvectors we then have:

$$
[e]^{-1}=\left[e^{t^{*}}\right] \quad(\text { the eigenvalue matrix is "unitary" })
$$

Therefore, for a Hermetian (self-adjoint) matrix with scaled (unit-magnitude) eigenvectors we have:

$$
[A]=[e][D]\left[e^{*}\right]
$$

