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Sturm-Liouville Theory
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 We first illustrate Sturm-Liouville theory for solutions to second-
order differential equations.

 We then apply the theory to matrices (linear algebra).

Joseph LiouvilleJacques Charles François Sturm



Second-Order Linear Differential 
Equations (SOLDE)
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A SOLDE has the form   

     

If , the equation is said to be "homogeneous".

The inhomogeneous equation can be solved once we know the solution to the 
homogeneo
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Neumann)

us equation using the method of Green's functions (discussed later).

Boundary conditions (BC)  are usually of the form 
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Sturm-Liouville Form 
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 If we multiply the general differential equation    

by the integrating factor  we have : 
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 Dividing this result by yields  

where 
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Sturm-Liouville Operator 
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This is called the Sturm-Liouville or self-adjoint form of the 
differential equation:

or (using u instead of y):

Where  is the (self-adjoint*) “Sturm-Liouville” operator:

Note: 
The operator  is assumed to be real here (w, P, Q are real). The solution u 

does not have to be real (because f is allowed to be complex).

* Discussed later



Inner Product Definition
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We define an  as

where is called a  function.

 Although the weight function is arbitrary, we will choose it to be 
the same as the integrating function 

 inner product

weight

 in the Sturm-Liouville equation. 
This will give us the nice "self - adjoint" properties, as we will see.
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An inner product between two functions is defined:
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, ,u v u v< > = < >†
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Note: 
Self-adjoint operators have nice properties for eigenvalue problems, 

which is discussed a little later. 

The adjoint operator † is defined from

The Adjoint Problem

(proof given next)

Hence, the Sturm-Liouville operator is said to be self-adjoint:



Proof of Self-Adjoint Property 
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 Consider the inner product between the two functions and  

The first term i
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Proof of Self-Adjoint Property (cont.) 

Hence, we have:
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Multiply and divide by w(x), combine with last term.
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Proof of Self-Adjoint Property (cont.) 
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Eigenvalue Problems 

, 1,2,n nλ λ= = 
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We often encounter an eigenvalue problem of the form

(The operator  can be the Sturm-Liouville operator, or any other operator here.)

The eigenvalue problem (with boundary conditions) is usually only satisfied 
for specific eigenvalues:

For each distinct eigenvalue, there corresponds an eigenfunction u = un 
that satisfies the eigenvalue equation.
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Property of Eigenvalues
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Property 1
The eigenvalues corresponding to a self-adjoint operator are real.
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Orthogonality of Eigenfunctions
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Property 2
The eigenfunctions corresponding to a self-adjoint operator 

equation are orthogonal* if the eigenvalues are distinct.

Consider two different solutions of the eigenvalue problem 
corresponding to distinct eigenvalues:
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Subtract

*Orthogonal means that 
the inner product is zero.



Orthogonality of Eigenfunctions (cont.)
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The LHS is:
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Summary of Eigenvalue Properties

15

Then we have:
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Assume an eigenvalue problem with a self-adjoint operator:

 The eigenvalues are real.

The eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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Example
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Orthogonality of Bessel functions
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Example (cont.)
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(This will be true if if um and un correspond to a Sturm-Liouville eigenvalue problem.)



Example (cont.)
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What is w(x)? 
 We need to identify the appropriate Sturm-Liouville eigenvalue problem that u(x) 
satisfies:
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This orthogonality will be true if if um and un correspond to a Sturm-
Liouville eigenvalue problem, with the associated function w(x).
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Example (cont.)
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( ) ( )  y t u xis then denoted as

Use:

Note:
The primes now mean 

differentiating with 
respect to x.
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Rearrange to put into Sturm-Liouville eigenvalue form:
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Compare with our standard Sturm-Liouville eigenvalue form:

We can now see that the u(x) functions come from a Sturm-Liouville 
problem, and we can identify:
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Example (cont.)
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Adjoint in Linear Algebra
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An inner product between two vectors is defined as:

* *, i i
i

a b a b a b≡ ⋅ =∑

An adjoint of a square complex matrix [A] is defined from:

, ,Au v u A v= †

Self-adjoint means:

A A= †

(There is no “weight” function here.)



Adjoint in Linear Algebra (cont.)
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* (tA A   =   
† i.e., the conjugate of the transpose)

Theorem For a complex square matrix [A], the adjoint is given by

* (H tA A   ≡    the Hermetian transpose)Note :



Adjoint in Linear Algebra (cont.)

*tA A   =   
†
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For a complex matrix we have established that 

Therefore, if a complex matrix is self-adjoint, this means that: 

Note: For a real matrix, self-adjoint means that the matrix is symmetric.

[ ] *t HA A A   = =   

(The matrix is then also called Hermetian.)



Orthogonality in Linear Algebra
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 The eigenvalues of a Hermetian matrix are real.

 The eigenvectors of a Hermetian matrix corresponding to distinct 
eigenvalues are orthogonal. 

 The eigenvectors of a Hermetian matrix corresponding to the same 
eigenvalue can be chosen to be orthogonal (proof omitted). 

Because a Hermetian matrix is self-adjoint, we have the following properties:

For a real matrix, these properties apply to a symmetric matrix.



Diagonalizing a Matrix
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eigenvector (a column vector) corresponding to eigenvalue

(proof on next slide)

If the eigenvectors of an N×N matrix [A] are linearly independent, 
the matrix can be “diagonalized” as follows:
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[ ][ ] [ ] [ ] [ ] ( )1 1 2 2 N Ne D e e eλ λ λ =   from properties of a diagonal matrix

Diagonalizing a Matrix (cont.)

[ ][ ] [ ] [ ] [ ] ( )1 1 2 2 N NA e e e eλ λ λ =   from properties of eigenvectors

Proof of diagonalization property:

Hence, we have

[ ][ ] [ ][ ]A e e D=

[ ] [ ][ ][ ] 1A e D e −=

so that
Note:

The inverse will exist since the columns of the 
matrix [e] are linearly independent, by assumption.

(Please see next slide.)
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[ ][ ] [ ] [ ]
11 12 13 14 1 11 2 12 3 13 3 141

21 22 23 24 1 21 2 22 3 23 3 242
1 1 2 2 2

31 32 33 34 1 31 2 32 3 33 3 343

41 42 43 44 1 41 2 42 3 43 3 444

0 0 0
0 0 0
0 0 0
0 0 0

e e e e e e e e
e e e e e e e e

e D e e e
e e e e e e e e
e e e e e e e e

λ λ λ λλ
λ λ λ λλ

λ λ λ
λ λ λ λλ
λ λ λ λλ

    
    
    = = =
    
    

    

[ ] [ ]2 4 4eλ  

Diagonalizing a Matrix (cont.)

[ ][ ] [ ] [ ] [ ] ( )1 1 2 2 N NA e e e eλ λ λ =   from properties of eigenvectors

[ ][ ] [ ] [ ] [ ] ( )1 1 2 2 N Ne D e e eλ λ λ =   from properties of a diagonal matrix

[ ][ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24
1 2 3 4 4 1 1 2 2 3 3 4 4

31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44

A A A A e e e e
A A A A e e e e

A e A e A e A e A e e e e e
A A A A e e e e
A A A A e e e e

λ λ λ λ

   
   
       = = =      
   
   

Note: We visualize here for a 4×4 matrix.
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Diagonalizing a Matrix (cont.)
If the matrix [A] is Hermetian (self-adjoint), then the eigenvectors are 
orthogonal, and hence linearly independent. We then have

A Hermetian matrix is always diagonalizable!

[ ] [ ][ ][ ] 1A e D e −=

If the eigenvectors are scaled so that they have unit magnitude, 
then we also have:

[ ] [ ] [ ] ( )*tM e e I ≡ =  identitymatrix

This follows from the orthogonality property of the eigenvectors:

Note: For the diagonal elements, [M]mm = 1 if the eigenvectors have been scaled so that 
* 1m me e⋅ =

[ ] ( )* 0m nmn
M e e m n= ⋅ = ≠ [ ]( )th *     .mm M eThe row of is the transpose of
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Diagonalizing a Matrix (cont.)

[ ] ( )1 *te e−  =   the eigenvalue matrix is "unitary"

Therefore, for a Hermetian (self-adjoint) matrix with scaled 
(unit-magnitude) eigenvectors we have:

[ ] [ ][ ] *tA e D e =  

Hence, for a Hermetian matrix with scaled (unit-magnitude) 
eigenvectors we then have:
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