ECE 6382

Fall 2023

David R. Jackson

Notes 2

Differentiation of Functions of a Complex Variable

Notes are adapted from D. R. Wilton, Dept. of ECE

Functions of a Complex Variable

- Function of a complex variable: $w=f(z)$

$$
\begin{aligned}
& z=x+i y, \quad w=u+i v \\
& w=f(z)=u(z)+i v(z)=u(x, y)+i v(x, y) \\
& \quad \quad\left(\text { e.g., }, f(z)=z^{2}, u(x, y)=x^{2}-y^{2}, v(x, y)=2 x y\right)
\end{aligned}
$$

- Examples of functions:

$$
\begin{array}{ll}
w=a+b z+c z^{2}, & w=A \sinh (\sqrt{z}) \\
w=\frac{a+b z}{c+d z+e z^{2}}, & w=\sum_{n=0}^{\infty} z^{n}
\end{array}
$$

Differentiation of Functions of a Complex Variable

- Derivative of a function of a complex variable :

$$
f^{\prime}(z)=\frac{d f}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta f}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

- To define a unique derivative at a point z, the limit
- must exist at z
- must be independent of the direction of $\Delta z=\arg (\Delta z)$ at z

The Cauchy - Riemann Conditions

Denote $\Delta z=\Delta x+i \Delta y$

$$
w=f(z)=u(x, y)+i v(x, y)
$$

First, let $\Delta z=\Delta x$:

$$
\begin{aligned}
\frac{d f}{d z} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(z+\Delta x)-f(z)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x, y)-u(x, y)}{\Delta x}+i \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x, y)-v(x, y)}{\Delta x} \\
\Rightarrow \frac{d f}{d z} & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}
\end{aligned}
$$

Augustin-Louis Cauchy

- \quad Next let $\Delta z=i \Delta y$:

$$
\begin{aligned}
\frac{d f}{d z} & =\lim _{\Delta y \rightarrow 0} \frac{\Delta f}{i \Delta y}=\lim _{\Delta y \rightarrow 0} \frac{f(z+i \Delta y)-f(z)}{i \Delta y} \\
& =\lim _{\Delta y \rightarrow 0} \frac{u(x, y+\Delta y)-u(x, y)}{i \Delta y}+\dot{\lambda} \lim _{\Delta y \rightarrow 0} \frac{v(x, y+\Delta y)-v(x, y)}{\dot{\lambda} \Delta y}
\end{aligned}
$$

Bernhard Riemann
$\Rightarrow \frac{d f}{d z}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \quad$ Question: Is $\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}$?

The Cauchy - Riemann Conditions (cont.)

- We found

$$
\frac{d f}{d z}=\underbrace{\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}}_{\Delta z=\Delta x} \quad \frac{d f}{d z}=\underbrace{\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}}_{\Delta z=i \Delta y}
$$

- For a unique derivative, these expressions must be equal. That is, a necessary condition for the existence of a derivative of function of a complex variable is that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \& \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \quad \text { Cauchy-Riemann equations }
$$

- We've proved that if $\frac{d f}{d z}$ exists \Rightarrow Cauchy-Riemann conditions.

The Cauchy - Riemann Conditions (cont.)

- Next, we prove that Cauchy-Riemann conditions $\Rightarrow \frac{d f}{d z}$ exists (sufficiency):

$$
\begin{aligned}
\frac{\Delta f}{\Delta z} & =\frac{\Delta u+i \Delta v}{\Delta z} \approx \frac{\left(\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y\right)+i\left(\frac{\partial v}{\partial x} \Delta x+\frac{\partial v}{\partial y} \Delta y\right)}{\Delta x+i \Delta y} \\
& =\frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial y}+i \frac{\partial v}{\partial y}\right) \Delta y}{\Delta x+i \Delta y}
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{\substack{\text { Use C.R. } \\
\text { conditions } \\
=}}{ } \frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(-\frac{\partial v}{\partial x}+i \frac{\partial u}{\partial x}\right) \Delta y}{\Delta x+i \Delta y} \\
=\frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right) \Delta x+\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(i \Delta y)}{\Delta x+i \Delta y}
\end{gathered}
$$

Total differentials :

$$
\begin{aligned}
& \Delta u(x, y) \approx \frac{\partial u(x, y)}{\partial x} \Delta x+\frac{\partial u(x, y)}{\partial y} \Delta y \\
& \Delta v(x, y) \approx \frac{\partial v(x, y)}{\partial x} \Delta x+\frac{\partial v(x, y)}{\partial y} \Delta y
\end{aligned}
$$

$$
=\frac{\left(\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}\right)(\Delta x+i \Delta y)}{\Delta x+i \Delta y}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}, \text { independent of } \arg (\Delta z)=\tan ^{-1} \frac{\Delta y}{\Delta x}
$$

The Cauchy - Riemann Conditions (cont.)

Hence, we have the following equivalent statements:

- $\frac{d f}{d z}$ exists \Leftrightarrow Cauchy-Riemann conditions.
or
- $\frac{d f}{d z}$ exists if and only if (iff) the Cauchy - Riemann conditions hold.
or
- The Cauchy-Riemann conditions are a necessary and sufficient condition for the existence of the derivative $\frac{d f}{d z}$ of a complex variable f.

The Cauchy - Riemann Conditions (cont.)

- We say that a function is "analytic" at a point if the derivative exists there (and at all points in some neighborhood of the point).

- $\quad f(z)$ is said to be "analytic" in a domain
D if the derivative exsits at each point in D.
- The theory of complex variables largely exploits the remarkable properties of analytic functions.
- The terms " holomorphic", "regular", and "differentiable" are also used instead of "analytic."

Applying the Cauchy - Riemann Conditions

\diamond Example 1:

$$
\begin{aligned}
f(z) & =z=(x+i y)=\overbrace{x}^{u(x, y)}+i \overbrace{y}^{v(x, y)} \\
\frac{\partial u}{\partial x}=1 & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y}=0 & =-\frac{\partial v}{\partial x}
\end{aligned} \Rightarrow \text { C.R. conditions hold everywhere (for } z \text { finite) }
$$

$\Rightarrow z$ is analytic everywhere
\diamond Example 2 :

$$
\begin{aligned}
& f(z)=z^{*}=(x+i y) *=\overbrace{x}^{u(x, y)}+i \overbrace{(-y)}^{v(x, y)} \\
& \frac{\partial u}{\partial x}=1 \neq \frac{\partial v}{\partial y}=-1 \text { X } \\
& \frac{\partial u}{\partial y}=0=-\frac{\partial v}{\partial x} \Rightarrow \text { C.R. conditions hold nowhere } \\
& \Rightarrow z^{*} \text { is analytic nowhere }
\end{aligned}
$$

Applying the Cauchy - Riemann Conditions (cont.)

\diamond Example 3 :

$$
\begin{aligned}
f(z) & =\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}} \\
& =\underbrace{\frac{x}{x^{2}+y^{2}}}_{u(x, y)}+i \underbrace{\left(\frac{-y}{x^{2}+y^{2}}\right)}_{v(x, y)}
\end{aligned}
$$

$\frac{\partial u}{\partial x}=\frac{x^{2}+y^{2}-\not 2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \stackrel{?}{=} \frac{\partial v}{\partial y}=\frac{-x^{2}-y^{2}+\not 2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$\frac{\partial u}{\partial y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{\partial v}{\partial x} \downarrow \Rightarrow \mathbf{C} . \boldsymbol{R}$. conditions hold everywhere except $x=y=0(z=0)$.
$f(z)$ is analytic everywhere except at $z=0$. The point $z=0$ is called a "singularity."

A singularity is a point where the function is not analytic.

Applying the Cauchy - Riemann Conditions (cont.)

\diamond Example 4:
$f(z)=\sin (z)=\sin (x+i y)=\sin x \cos (i y)+\sin (i y) \cos x$
but $\cos (i y)=\frac{e^{i(i y)}+e^{-i(i y)}}{2}=\frac{e^{-y}+e^{y}}{2}=\cosh y$,
$\sin (i y)=\frac{e^{i(i y)}-e^{-i(i y)}}{2 i}=-i \frac{e^{-y}-e^{y}}{2}=i \sinh y$
so $\quad \sin (z)=\sin (x+i y)=\underbrace{\sin x \cosh y}+i \sinh y \cos x$

$$
\underbrace{}_{u(x, y)} \underbrace{\sim}_{v(x, y)}
$$

$\Rightarrow \frac{\partial u}{\partial x}=\cos x \cosh y=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=\sin x \sinh y=-\frac{\partial v}{\partial x}$
\Rightarrow C.R. conditions hold for all finite z
Now use : $f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\cos x \cosh y-i \sin x \sinh y$

$$
\begin{aligned}
& =\cos x \cos (i y)-\sin x \sin (i y) \\
& =\cos (x+i y) \\
& =\cos z
\end{aligned} \quad \Rightarrow \quad f^{\prime}(z)=\frac{d}{d z} \sin (z)=\cos z
$$

Differentiation Rules (cont.)

\diamond Example

$$
\begin{aligned}
\frac{d}{d z}\left(z^{2}\right) & =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-(z)^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z)^{2}+2 z \Delta z+(\Delta z)^{2}-(z)^{2}}{\Delta z} \\
& =2 z+\lim _{\Delta z \rightarrow 0} \Delta z \\
& =2 z
\end{aligned}
$$

Note: The above "brute-force" derivation, directly using the definition of the derivative, is exactly what is done in usual calculus, with x being used there instead of z.

Differentiation Rules

- It is relatively simple to prove on a case -by - case basis that practically all formulas for differentiating functions of real variables also apply to the corresponding function of a complex variable :

$$
\begin{aligned}
\frac{d z^{n}}{d z}=n z^{n-1}, \frac{d e^{a z}}{d z}= & a e^{a z}, \quad \frac{d \sin z}{d z}=\cos z, \quad \frac{d \cos z}{d z}=-\sin z, \text { etc. } \\
\frac{d}{d z}\left(z^{n}\right)=n z^{n-1} \Rightarrow & \begin{array}{l}
\text { every polynomial of degree } N, P_{N}(z), \\
\\
\\
\text { in } z \text { is analytic (differentiable). }
\end{array} \\
\Rightarrow & \text { every rational function } \frac{P(z)}{Q(z)} \text { in } z \text { is analytic except } \\
& \text { where } Q(z) \text { vanishes. }
\end{aligned}
$$

Differentiation Rules

\square Replacing x by z in the usual derivations for functions of a real variable, we find practically all differentiation rules for functions of a complex variable turn out to be identical to those for real variables :

$$
\begin{aligned}
& \frac{d(f(z) \pm g(z))}{d z}=f^{\prime}(z) \pm g^{\prime}(z) \\
& \frac{d(f(z) g(z))}{d z}=f^{\prime}(z) g(z)+f(z) g^{\prime}(z) \\
& \frac{d}{d z}\left(\frac{f(z)}{g(z)}\right)=\frac{g f^{\prime}-f g^{\prime}}{(g)^{2}}
\end{aligned}
$$

A Theorem Related to z^{*}

If $f=f\left(z, z^{*}\right)$ is analytic, then

$$
\frac{\partial f}{\partial z^{*}}=0
$$

(An analytic function cannot vary with z^{*}, and therefore cannot be a function of z^{*}, except in a trivial way.)

All functions that contain z^{*} are therefore not analytic, except for some trivial cases (where the function does not really vary with z^{*}).

A Theorem Related to z^{*} (cont.)

Examples:

$f(z)=z^{*}$ is analytic nowhere, since $\frac{\partial f}{\partial z^{*}}=1 \neq 0$ (not independent of z^{*})
$f(z)=\sin z^{*}$ is not analytic, since $\frac{\partial f}{\partial z^{*}}=\cos z^{*} \neq 0$ (unless $z=(2 n+1) \pi / 2$)
$f(z)=|z|^{2}=z z^{*}$ is not analytic, since $\frac{\partial f}{\partial z^{*}}=z \neq 0$ (unless $z=0$)
$f(z)=\sin (z)+\cos \left(z^{*}\right)$ is not analytic, since $\frac{\partial f}{\partial z^{*}}=-\sin \left(z^{*}\right) \neq 0$ (unless $z=n \pi$)
$f(z)=\frac{z^{*}}{z^{*}}=1$ is analytic everywhere, since $\frac{\partial f}{\partial z^{*}}=\frac{\partial}{\partial z^{*}}(1)=0$

Proof of z^{*} Theorem

\square C.R. conditions:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \\
& \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
\end{aligned}
$$

$$
\frac{\partial f}{\partial z^{*}}=0
$$

(An analytic function cannot vary with z^{*}, and therefore cannot really be a function of z^{*}, except in a trivial way.)

Note that

$$
z=x+i y, \quad z^{*}=x-i y
$$

Treating z and z^{*} as independent variables:

$$
\begin{align*}
& \frac{\partial u\left(z, z^{*}\right)}{\partial x}=\frac{\partial u}{\partial z} \underbrace{\frac{\partial z}{\partial x}}_{=1}+\frac{\partial u}{\partial z^{*}} \underbrace{\frac{\partial z^{*}}{\partial x}}_{=1} \stackrel{\begin{array}{c}
\text { C.R. } \\
\text { conds. } \\
=
\end{array}}{ } \frac{\partial v\left(z, z^{*}\right)}{\partial y}=\frac{\partial v}{\partial z} \underbrace{\frac{\partial z}{\partial y}}_{=i}+\frac{\partial v}{\partial z^{*}} \underbrace{\frac{\partial z^{*}}{\partial y}}_{=-i} \\
& \quad \Rightarrow \quad \frac{\partial u}{\partial z}+\frac{\partial u}{\partial z^{*}}=i\left(\frac{\partial v}{\partial z}-\frac{\partial v}{\partial z^{*}}\right) \tag{1}
\end{align*}
$$

A Theorem Related to z^{*} (cont.)

Similarly,

$$
\begin{align*}
& \frac{\partial v\left(z, z^{*}\right)}{\partial x}=\frac{\partial v}{\partial z} \underbrace{\frac{\partial z}{\partial x}}_{=1}+\frac{\partial v}{\partial z^{*}} \underbrace{\frac{\partial z^{*}}{\partial x}}_{=1} \stackrel{\stackrel{\text { C.R.R. }}{\text { conds. }}=}{=}-\frac{\partial u\left(z, z^{*}\right)}{\partial y}=-\frac{\partial u}{\partial z} \underbrace{\frac{\partial z}{\partial y}}_{=i}-\frac{\partial u}{\partial z^{*}} \underbrace{\frac{\partial z^{*}}{\partial y}}_{=-i} \\
& \quad \Rightarrow \quad \frac{\partial v}{\partial z}+\frac{\partial v}{\partial z^{*}}=-i\left(\frac{\partial u}{\partial z}-\frac{\partial u}{\partial z^{*}}\right) \tag{2}
\end{align*}
$$

Next, consider

$$
\begin{aligned}
& \frac{\partial f}{\partial z^{*}}=\frac{\partial u}{\partial z^{*}}+i \frac{\partial v}{\partial z^{*}}=-i\left(\frac{\partial \downarrow}{\partial z}+\frac{\partial v}{\partial z^{*}}\right)+\frac{\partial u}{\partial z} \\
& \text { from (2) } \overbrace{i \frac{\partial \downarrow}{\partial z}-\left(\frac{\partial u}{\partial z}+\frac{\partial u}{\partial z^{*}}\right)}^{\text {from (1) }} \\
&=-\left(\frac{\partial u}{\partial z^{*}}+i \frac{\partial v}{\partial z^{*}}\right)=-\frac{\partial f}{\partial z^{*}} \Rightarrow \frac{\partial f}{\partial z^{*}}=0 \\
& \Rightarrow f \text { is independent of } z^{*}
\end{aligned}
$$

Entire Functions

A function that is analytic everywhere in the finite* complex plane is called "entire".

- Typical functions that are entire (analytic everywhere in the finite complex plane):

$$
\begin{aligned}
& 1, z, z^{2}, z^{3}, z^{4}, z^{5}, \cdots, z^{n}, \cdots \\
& e^{z}, \sin z, \cos z, \sinh z, \cosh z
\end{aligned}
$$

- Typical functions analytic almost everywhere:

$$
\frac{1}{z^{2}}, \frac{1}{z^{2}-1}, z^{1 / 2}, \tan z, \cot z, \tanh z, \operatorname{coth} z
$$

* A function is said to be analytic everywhere in the finite complex plane if it is analytic everywhere except possibly at infinity.

Analytic at infinity: Let $w=1 / z$ Is the function analytic at $w=0$?

Combinations of Analytic Functions

Combinations of functions:
\square Finite linear combinations of analytic functions are analytic :
If $f(z), g(z), h(z)$ are analytic

$$
\Rightarrow a f(z)+b g(z)+c h(z) \text { is analytic }
$$

- Composite combinations of analytic functions are analytic:

If $f(z), g(z)$ are analytic
$\Rightarrow f(g(z))$ is analytic

Combinations of Analytic Functions (cont.)

Infinite series:

$\square \quad$ Infinite series may be:

- Analytic everywhere
- Analytic somwhere

The "somewhere" might depend on the form used to represent the function.

Example:

$$
\begin{aligned}
& f(z)=\frac{1}{1-z} \\
& f(z)=1+z+z^{2}+z^{3}+\ldots,|z|<1
\end{aligned}
$$

The first form is analytic everywhere except $z=1$.
The second form is analytic for $|z|<1$ (the series does not converge on or outside the unit circle).

Combination of Analytic Functions (cont.)

Examples

Composite functions of analytic functions are also analytic.

$$
\begin{aligned}
& f(z)=z^{2} \\
& g(z)=\sin z \\
& h(z)= g(f(z))=\sin \left(z^{2}\right) \quad \text { analytic }
\end{aligned}
$$

Derivatives of analytic functions are also analytic (proof given later).

$$
\begin{aligned}
& f(z)=\sin z \\
& f^{\prime}(z)=\cos z \quad \text { analytic }
\end{aligned}
$$

Important theorem (proven later)

The derivative of an analytic function is also analytic.
$f(z)$ is analytic
π
$f^{\prime}(z)$ is analytic
Ω

> Hence, all derivatives of an analytic function are also analytic.
$f^{\prime \prime}(z)$ is analytic
$\sqrt{3}$

Real and Imaginary Parts of Analytic Functions Are Harmonic Functions

Assume an analytic function: $f(z)=u(x, y)+i v(x, y)$

$$
\Rightarrow \nabla^{2} u(x, y)=\nabla^{2} v(x, y)=0
$$

The functions u and v are harmonic (i.e., they satisfy Laplace's equation)

$$
\text { Notation: }\left\{\begin{array}{l}
u=u(z)=u(x, y) \\
v=v(z)=v(x, y)
\end{array}\right.
$$

This result is extensively used in conformal mapping to solve electrostatics and other problems involving the 2D Laplace equation (discussed later).

Real and Imaginary Parts of Analytic Functions Are Harmonic Functions (cont.)

Proof

$$
f \text { is analytic } \Rightarrow d f / d z \text { is also analytic (see slide 23) }
$$

Analytic $\Rightarrow \frac{d f}{d z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \quad$ (Notation: $\left.f(z)=u(x, y)+i v(x, y)\right)$ Denote $f^{\prime}(z) \equiv U+i V$

We have : $\quad U(x, y)=\operatorname{Re}\left(f^{\prime}(z)\right)=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \not\left\langle V(x, y)=\not\left\langle\frac{\partial v}{\partial x}=-\not \lambda^{\prime} \frac{\partial u}{\partial y}\right.\right.$
Apply the C.R.conditions to $f^{\prime}(z)$:

$$
\begin{aligned}
& \frac{\partial U}{\partial x}=\frac{\partial V}{\partial y} \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}} \Rightarrow \nabla^{2} u=0 \\
& \frac{\partial V}{\partial x}=-\frac{\partial U}{\partial y} \Rightarrow \frac{\partial^{2} v}{\partial x^{2}}=-\frac{\partial^{2} v}{\partial y^{2}} \Rightarrow \nabla^{2} v=0
\end{aligned}
$$

Real and Imaginary Parts of Analytic Functions Are Harmonic Functions (cont.)

Example: $\quad w=f(z)=z^{2}$

$$
\begin{gathered}
w=u+i v=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) \\
\Rightarrow\left\{\begin{array}{l}
u(x, y)=x^{2}-y^{2} \\
v(x, y)=2 x y
\end{array}\right. \\
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2-2=0 \quad \nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0+0=0
\end{gathered}
$$

Real and Imaginary Parts of Analytic Functions Are Harmonic Functions (cont.)

Example: $w=f(z)=\sin (z)$

$$
w=u+i v=\sin (x+i y)=\sin x \cosh y+i \cos x \sinh y
$$

$$
\Rightarrow\left\{\begin{array}{l}
u(x, y)=\sin x \cosh y \\
v(x, y)=\cos x \sinh y
\end{array}\right.
$$

$\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-\sin x \cosh y+\sin x \cosh y=0$
$\nabla^{2} v=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=-\cos x \sinh y+\cos x \sinh y=0$

