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Functions of a Complex Variable
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Function of a complex variable :

( e.g., , )

Examples of functions :
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Differentiation of Functions of a Complex Variable
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To define a unique derivative at a point ,  the limit 
must exist at 
must be independent of the direction o   f at 
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The Cauchy – Riemann Conditions
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First,  let :

Next let :

( ) ( )
0
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y

v x, y y v x, y
i∆ →

+ ∆ −
y

df v u u v v ui i i
dz y y x x y y

∆

∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂
Question: Is ?
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Augustin-Louis Cauchy

Bernhard Riemann

( ) ( ) ( )w f z u x, y iv x, y= = +z x i y∆ = ∆ + ∆Denote



The Cauchy – Riemann Conditions (cont.)

df u v df v ui i
dz x x dz y y

∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂

 We found 
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z x∆ = ∆ z i y∆ = ∆

df
dz

⇒ We've proved that if exists   Cauchy-Riemann conditions.

 For a unique derivative, these expressions 
      must be equal.  That is, a  condition

for the existence of a derivative of function of 
      a complex variable is that

necessary

u v u v&
x y y x
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= = −
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Use C.R. 
conditions

Next, we prove that Cauchy - Riemann conditions exists (sufficiency) :
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∂ ∂

Total differentials :
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The Cauchy – Riemann Conditions (cont.)

Arbitrary direction ∆z



df
dz

df
dz

• ⇔

•

•

exists Cauchy - Riemann conditions.

or

exists  (iff) the Cauchy - Riemann conditions hold.

or

      The Cauchy - Riemann conditions are a  

   condition for the e

if  and only if

necessary and sufficient
df f
dz

xistence of the derivative   of a complex variable .
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The Cauchy – Riemann Conditions (cont.)

Hence, we have the following equivalent statements:



 We say that a function is "analytic" at a point if the derivative exists there
(and at all points in some neighborhood of the point).

( )f z
D D

   is said to be "analytic" in a domain 
 if the derivative exsits at each point in .
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The Cauchy – Riemann Conditions (cont.)





The theory of complex variables largely exploits the 
    remarkable properties of analytic functions. 

The  terms " holomorphic",  "regular",  and "differentiable"  
    are also used  instead of "analytic." 

D

x

y



Applying the Cauchy – Riemann Conditions
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C.R. conditions hold everywhere for  finite

is analytic everywhere

    

 Example 1 :

 Example 2
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x
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∂
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∂
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C.R. conditions hold

is analytic nowhere  

nowhere
X
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Applying the Cauchy – Riemann Conditions (cont.)
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Example 3 
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C.R. conditions hold everywhere except 

is analytic everywhere except at The point  is called a "singularity."
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is analytic except at
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A singularity is a point where the function is not analytic.
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Applying the Cauchy – Riemann Conditions (cont.)



Differentiation Rules (cont.)
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Note: The above “brute-force” derivation, directly using the definition of the derivative, 
is exactly what is done in usual calculus, with x being used there instead of z. 



Differentiation Rules

  It is relatively simple to prove on a case - by - case basis that practically all 
    formulas for differentiating functions of real variables also apply to the 
    corresponding function of a complex 

( ) ( )

( )
( )

1

1 sin coscos sin etc.

n n
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n az
n azd z d e d z d znz , ae , z, z,

dz dz dz dz
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−

−
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=

variable :

every polynomial of degree ,  , 
in  is analytic (differentiable).

every rational function in  is analytic  
w

except

( )Q zhere vanishes.
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Differentiation Rules

x z  Replacing     by    in the usual derivations for functions of a real variable,  
we find practically all differentiation rules for functions of a complex

    variable turn out to be  identical to t
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±
′ ′= ±

′ ′= +

  ′ ′−
=  

 

hose for real variables :
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A Theorem Related to z*
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If f = f (z,z*) is analytic, then

0f
z*
∂

=
∂

(An analytic function cannot vary with z*, and therefore cannot be a function of 
z*, except in a trivial way.)

All functions that contain z* are therefore not analytic, except for some trivial cases
(where the function does not really vary with z*).
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A Theorem Related to z* (cont.)



Proof of z* Theorem
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∂ ∂
∂ ∂
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∂ ∂
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∂ ∂ ∂ ∂
+ = −

∂ ∂ ∂
⇒

= = = = −



=
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 C.R. conditions :

Note that 

Treating   and as independent variables :

z*
 
 ∂ 

(1)
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If f = f (z,z*) is analytic, then

0f
z*
∂

=
∂

(An analytic function cannot vary with z*, and therefore 
cannot really be a function of z*, except in a trivial way.)
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from (1)

is independent of 
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A Theorem Related to z* (cont.)



Entire Functions

1 2
2 2

2 3 4 51

sin cos sinh cosh

1 1, tan
1

/

n

z
, z, z , z , z ,z , ,z ,

e , z, z, z, z

, z ,
z z −





 

   Typical functionsthat are entire
 (analytic everywhere in the finite complex plane) :

   Typical functions analytic everywhere :almost

 cot tanh cothz, z, z, z
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A function that is analytic everywhere in the finite* 
complex plane is called “entire”.

* A function is said to be analytic everywhere in the finite complex plane if 
it is analytic everywhere except possibly at infinity.

1w / z=LetAnalytic at infinity: Is the function analytic at w = 0?



Combinations of Analytic Functions

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( )( )

f z ,g z ,h z

a f z b g z c h z

f z ,g z

f g z

+⇒

⇒
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   of analytic functions are analytic :
are analytic

is analytic

 of analytic functions are analytic :

are analytic

is analy

If

If

Finite linear combinations

Composite combinations

tic 
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Combinations of functions:



     may be :  
- Analytic everywhere 
- Analytic somwhere 

Infinite series
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Infinite series:

Example:

( ) 2 31 1f z z z z , z= + + + + <

( ) 1
1

f z
z

=
−

The first form is analytic everywhere 
except z = 1. 

The second form is analytic for |z| < 1 
(the series does not converge on or 
outside the unit circle).

Combinations of Analytic Functions (cont.)

The “somewhere” might depend on the form used to represent the function.
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Composite functions of analytic functions are also analytic.

Derivatives of analytic functions are also analytic (proof given later). 

( )
( )

2

sin

f z z

g z z

=

=

( ) ( )( ) ( )2sinh z g f z z= =

( )
( )

sin

cos

f z z

f z z

=

′ =

analytic

analytic

Examples 

Combination of Analytic Functions (cont.)



Derivatives of Analytic Function
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Important theorem (proven later)

The derivative of an analytic function is also analytic. 

( )f z is analytic

( )f z′ is analytic

( )f z′′ is analytic



Hence, all derivatives of an 
analytic function are also 

analytic.



Real and Imaginary Parts of Analytic Functions
Are Harmonic Functions

( ) ( ) ( )f z u x, y iv x, y= +Assume an analytic function:

This result is extensively used 
in conformal mapping to solve 

electrostatics and other problems 
involving the 2D Laplace equation

(discussed later). 
24

( ) ( )2 2 0u x, y v x, y∇ =∇ =

The functions u and v are harmonic (i.e., they satisfy Laplace’s equation)

( ) ( )
( ) ( )

u u z u x, y

v v z v x, y

= =

= =
Notation:

Pierre-Simon Laplace



Real and Imaginary Parts of Analytic Functions
Are Harmonic Functions (cont.)

( )

( ) ( )( )Re ;

df u v v ui i
dz x x y y

f z U iV

u vU x, y f z i
x y

∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂
′ ≡ +

∂ ∂′= = =
∂ ∂

⇒Analytic 

Denote

We have :  ( )V x, y i=
v i
x

∂
= −

∂

( )
2 2

2 2

2 2

2 2

2

2

0

0

u
y

f z

U V u u
x y x y

V U v v
x y x y

u

v

∂
∂

′

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − =

⇒

−
∂ ∂

⇒

⇒ ⇒
∂ ∂

∇ =

∇ =

Apply the C.R. conditions to  :

f  is analytic  ⇒ df / dz is also analytic (see slide 23)
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Proof 

( ) ( ) ( )( ): f z u x, y iv x, y= +Notation



Real and Imaginary Parts of Analytic Functions
Are Harmonic Functions (cont.)
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Example: ( ) 2w f z z= =

( ) ( ) ( )2 2 2 2w u iv x iy x y i xy= + = + = − +

( ) 2 2u x, y x y= −

( ) 2v x, y xy=

2 2
2

2 2 2 2 0u uu
x y
∂ ∂

∇ = + = − =
∂ ∂

2 2
2

2 2 0 0 0v vv
x y
∂ ∂

∇ = + = + =
∂ ∂



Real and Imaginary Parts of Analytic Functions
Are Harmonic Functions (cont.)
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Example: ( ) ( )sinw f z z= =

( )sin sin cosh cos sinhw u iv x iy x y i x y= + = + = +

( ), sin coshu x y x y=

( ), cos sinhv x y x y=

2 2
2

2 2 sin cosh sin cosh 0u uu x y x y
x y
∂ ∂

∇ = + = − + =
∂ ∂

2 2
2

2 2 cos sinh cos sinh 0v vv x y x y
x y
∂ ∂

∇ = + = − + =
∂ ∂


	Slide Number 1
	Functions of a Complex Variable
	Differentiation of Functions of a Complex Variable
	The Cauchy – Riemann Conditions
	The Cauchy – Riemann Conditions (cont.)
	The Cauchy – Riemann Conditions (cont.)
	The Cauchy – Riemann Conditions (cont.)
	The Cauchy – Riemann Conditions (cont.)
	Applying the Cauchy – Riemann Conditions
	Applying the Cauchy – Riemann Conditions (cont.)
	Applying the Cauchy – Riemann Conditions (cont.)
	Differentiation Rules (cont.)
	Differentiation Rules
	Differentiation Rules
	A Theorem Related to z*
	A Theorem Related to z* (cont.)
	Proof of z* Theorem
	A Theorem Related to z* (cont.)
	Entire Functions
	Combinations of Analytic Functions
	Slide Number 21
	Slide Number 22
	Derivatives of Analytic Function
	Real and Imaginary Parts of Analytic Functions�Are Harmonic Functions
	Real and Imaginary Parts of Analytic Functions�Are Harmonic Functions (cont.)
	Real and Imaginary Parts of Analytic Functions�Are Harmonic Functions (cont.)
	Real and Imaginary Parts of Analytic Functions�Are Harmonic Functions (cont.)

