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Notes 3

Integration in the Complex Plane

Notes are adapted from D. R. Wilton, Dept. of ECE



e Define §, on C betweenz, andz,

e Consider the sums

sz Z—Z)

e |Letthe number of subdivisions N — o
suchthatAz, =(z,-z,,)—> 0 anddefine
b

lsjf(z)dz = lim I

Az,
—hm Zf Z—Z )

(The result is independent of the
details of the path subdivision, for
reasonably well-behaved functions.)




Denote

b

jf(z)dz = ‘]‘)‘[u(x,y)+iv(x,y)](dx+idy)

a

I

b=(xy.yN) b=(xy yw)
= J u(x,y)dx—v(x,y)dy + i I v(x,y)dx+u(x,y)dy

a=(x0,%9) a=(x0.50)

= jcudx—vdy+ ijcvderudy

I = jcudx—vdy+ ijcvdx+udy

The complex line integral is equivalent to two real line integrals on C.



(, =1, © A lineintegral writtenas Icu(x,y)dx—v(x,y)dy
C v is really a shorthand for
(x(l), y(l)) tf d d
£ v g
2 j ( dt  dt
4y
f where ¢ is some parameterization of C:
X
C:x=x(t), y=y(t), th <ty
——— AN e !
o o b 3t 4, - Iy tp=1Iy

The path C goes

0 Example: parameterizations of the circle x* + y* = 4* counterclockwise
around the circle.

1) x=acost, y=asint, 0<t(=0)<2rx

and

2) x=t,y=va> -1, thy=a, t;=-a, Qf
-a a
_a at



o While it may be possible to parameterize C using x or y
as the independent parameter, it must be remembered that the other
variable (y or x )isin general always a function of that parameter!

lllustration: Icu (x,y)dx — v(x,y) dy

The red color denotes functional dependence.

Xf—
:j u(x,y(x))—v(x,y(x))%}dx (if x is the independent parameter)
X
xo -
HT dx
:_[ u(x(y),y)d——v(x(y),y)}dy (if y is the independent parameter)
Y



Y ¢ Evaluate I:jldz -where
zZ

C
/d C: x=acosf, y=asinf, 0<0<r
6

Although it is easier to use polar coordinates (see the next example), we use
Cartesian coordinates to illustrate the previous Cartesian line integral form.

_l: 1 _ 1 X —iy _ X g =y (XY
f(Z)_z X +1y x+iy£x—iy} (x2+y2j+l(x2+y2j (a2j+l(a2j
/ I = Icudx—vdy+ ijcvderudy

= jC(u+iv)dx+ jc(—v+iu)dy

The red color denotes functional dependence.

v(z)=" ; :f[; +i(—£gx>ﬂdx I, :z[a_ﬂ(xg)ﬂ y

a

X
-y
2










(RN

Note: By symmetry (compare z and —z,
and compare dz), we also have:

1 .
i};dzzZ%t




y

¢ Evaluate CJ‘DanZ : where

—  z=rcos@+irsin@ = re'’,

C z (2)
iy C
K/@ N C: x=rcosf, y=rsinf, 0<0<2rx

= dz =rie"d 0,

= Cﬁz”dz = 2_( (reie )n riedo
0

C
27 ¢ i0(n+1) 27
= " _[ ) g ="M (n=-1)
g Y (n+1) (n+1) .
1 i27(n+1) _1 0, n#—1 This is a useful result, and
= " = _ it is used to prove the
(n+1) 27i, n=-1 “residue theorem”.

Note: For n =-1, we can use the result on slide 9 (or just evaluate the integral in @ directly).
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Cauchy’s theorem:

If f(z) isanalyticin R then chf(z)dz =0
C

R — a simply -connectedregion

N

A “simply-connected” region
means that there are no “holes” in
the region. (Any closed path can

be shrunk down to zero size.)
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y
/

R —a simply connected region

B \\\\q\\\\\\\\\‘é ,

s

X

Cj)f(z)dz =

then use Stokes's theorem (see below).

C

o First,note that (fromslide 3)if f(z)=w=u+iv, then

C_‘Sudx—vdy +1 Cj)vdx+udy;

C

Z

o Construct 2D vectors A=ux—vy, B=vx+uy, dr=dxx+dyy inthe xy-plane

and write the integral above as

q.)f(z)d2= (JSA-dK +i<j>§-d£ = '[

interior of C

I

-(Vx,_él):

[N

g-)|©) [=>

<

Q| o I

- g)|Q) [~

Stokes's
Theorem

(VxA)-ZdS +i

J

(Vxﬁ)-idS, but

interior of C

£ Y z CR.

o o o8| ou ov coNds 0
ox oy Oz ox Oy

v u 0
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Some comments:

e The proof using Stokes's theoremrequires that u(x,y),v(x,y) have
continuous first derivatives and that C be smooth.

e The Goursat proof removes these restrictions; hence the theorem
is often called the Cauchy - Goursat theorem.

13



f(z) is analytic = (j}f(z)dz =0
C

o Thisimplies that the line integral between any two points is independent of the path,
as long as the functionis analytic in the region enclosed by the paths.

R — a simply - connected region R — asimply - connected region

<

y

-,

_ \\\\V\\\\\\\\w‘ 4
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Y R’ —simply - connected region

Y ‘R — amultiply - connected region

%////////////////‘ N ///////////////// -

./

O

'

e If f(z) isanalyticin R then cﬁ f(z)dz #0 ingeneral.
Cin

e Introduce an infinitesimal - width "bridge" to make R into a simply connectedregion R’

opposite directions and thus cancel = gf)f(z)dz = (]Sf(z)dz
G )

Note: The closed path integrals on C, and C, are not usually zero!



Summary: Result for a multiply-connected region

Y

‘R — amultiply -connected region

Note:
The path cannot be
shrunk down farther
than the boundary of
the “island”.
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¢ Example:

1 .
C(J;);dz=272'l

The integral around the arbitrary closed
path C must give the same result as the
integral around the circle (and we already
know the answer for the circle).

y

/

.

N

D

17



¢ If a function is analytic everywhere in a simply connected region, we
can shrink down the path to zero size, which verifies that the line
integral around a closed path in the region must be zero (since the
integrand must be continuous and hence finite in the region).

R — asimply -connected region R — asimply -connected region
y y

s

N

_ \\\‘\\\\\\\\\‘\‘ ,
N

v

v

Shrink the path down.
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This is an extension of the same
theorem in calculus (for real functions)
to complex functions.

Assume that 1 is analytic in a region R containing the path C.

Suppose we can find F(z) such that F’(z):d—F:f(z):

dz

= fo(Z)dZ = F(z,)-F(z,)

Zq

19



Proof

Recall:
The integal is pathindependent
if /(z)is analytic on paths from z, to z,.

X Choose a particular path C.

On this path:

Zph N
Zj.f(z)dzzj\lfiircl)o nZ:;f(é’n)Azn , Az, =z -z |,

¢, on C betweenz, , andz, (definition of line integral).

20



Proof (cont.)

e Assume F’(z)zcjl—F=f(Z);

Hence /()= F(¢,) = A - [z P

n n

Note: The error in this approximation is proportional to |Az|

X (see next slide).

AZ —0

(é’n z, = hm ZF Az = lim Z}ZKZ\Z\(

- tm [ TP o [Pt - BT o 5] Pt oo
e P Flona) [ [Fla) Pl

= F(Zb)‘

F(z,) (pathindependentif f(z)is analytic on paths from z, to z,)

21



Examination of Error in Approximation:

F(Zn)—F(Zn_l)
Az

n

F'(¢,)=

Use Taylor series:

—F(:/ﬂF'(m(zn_l—4,,>+§F"<;,1)<zn_l—¢n>2+...

Az, Az, Az, | 2
= F(Zn)A_:(Z"‘l)_F(g“n)+AIZn BF () n—é”n)z—%F (€0) (20 n)z}L
= (z,)’

22



Fundamental Theorem of Calculus:

If(z)dz = F(Zb)—F(Za)

e This permits us to make use of indefinite integrals :

n+l az
Iz”dz S jsinz dz =—cosz, jeazdzze , etc.
n+l1 a
Example:

e i Y 1+
jsin(z)dz:—cos(z)l =cos(1)—cos(1+1) <
1 C

=0.540302 —(0.833730 +(0.988898)) T

=—-0.293428 + i(—0.988898)

(This result is path independent since sin is analytic everywhere!)

23



Consider this integral:

Jf —-F(zy) = F(z Jf )dz + F (z)

20
Consider two different indefinite integrals:

.[f $)dd + F(z,) for arbitrary z,

ff )d¢ + F, (z,) for arbitrary z,

= If )d{ +F, (z,)—F (z) =constant

T This integral is some constant.

=) All indefinite integrals can only differ by a (complex) constant.
24



Y R —asimply-connectedregion Y R

4

%

7 \\\h\\\\\\\\‘i‘

o f(z) isassumedanalyticin R but we multiply by a factor

! (whichis
analytic except at zo)and consider the following integral around C:

- I

Z ZO

o Toevaluate this, shrink that path to a small circular path path C, as shown:

[foe = [ 1

Z—Z

25



We have:

[LE) g~ (L),

CZ_ZO

o Evaluate the C, integral on a small circular path, z—z, =re”, dz=rie?d6 :

J‘ f(Z) I/l\de_Zﬂif(zo) for r >0

CO(Z_ZO)

= jf )dz—27rlf(zo) = f(zo)zzjﬁgSZﬂZ) dz

o Note the remarkable result :

Cauchy Integral
Formula

The value of f(z) at z, is completely determined by its values on C!

26



Summary of Cauchy Integral Formula:

27[1452 ZO

Another way to write it:

1 z'
f(Z):_ 27l C'E f(— Z)' @z

The Cauchy integral formula is useful for many purposes in complex variable theory.

27



o Note thatif z, is outside C, the integrandis analyticinside C;
hence by the Cauchy's theorem, we have

1 Cﬁf(z) dz =0
27Zicz—

20
z, IS inside C z, Is outside C
°
20
fz) =g L) L §/C) 4o
2rmi 7z =z 271z -z

28



Cauchy Integral Formula: Summary of Both Cases:

C

0, z, outside C

Cﬁ f(z) 0 { 27i f(z,), 2, inside C
C

Application:
This gives us a numerical way to
determine if a point is inside of a
region: just set f(z) = 1.

29



)

Analytic

Since f'is analytic inside C, we can start with
the Cauchy integral formula:

fzy) = 2;! foz) dz (Note z,isinside C.)

A

)

z—zy—Az
zﬂixgg(z—i(z—)&_i? jdz
Tyl (2)(@—% —fxz—zwjdz

1 1

i, b

Note: We have proved that you can
differentiate w.r.t. z, under the integral sign!

30



Similarly (derivation omitted):

() = 2L

271 ¥ (2 - z,)

In general:

)= s o Lo

27i 7, dzy \ z—z

f(z)analyticin a simply @
connectedregion containing C
n!
C_ﬁ n+1

7t e (z2-2)

If £is analytic in a region, then all of the derivatives exist, and
hence all of the derivatives are analytic as well.

Note: All derivatives can be determined from f on the boundary!

31



If a function f(z) is continuous in a simply - connected
region R and

$ f(z)dz=0

C
for every closed contour C within R, then f(z) is analytic
throughout R .

e Cauchy's Theorem:|If f(z) isanalyticina simply - connected
region R then

$f(z)dz==0, CinR.
C

e Morera's Theorem: If afunction f(z) is continuousina simply -

connectedregion R and <‘j> f(z)dz =0 for every closed contour

C
C within R, then f{(z) is analytic throughout R.

e These theorems are converses of one another!

32



Assume that the function f(z) is continuousina
region R and

$ f(z)dz=0

C
for every closed contour C within k.

[ Note: / will be analytic if we can prove its derivative exists! ]

qu(z)dz:O = jf(g“)d{ is pathindependent, so define F(z)= jf(é’)dg

C )

Note that

-plat =] noae = FEETEL LT

20
Note : We can chose a small straight -line path between the two points since the
integralis path independent. Along this small path, f is almost constant (from continuity of f).

Pela) 1 frieae 3/ J ag = LC0) T (%)~ flz)

= F'(z9)=f(z). Hence Fisanalytic atany z, in R (its derivative exists). But then so are allits
derivatives. Thus F’is analyticat z,. But F'= f. Hence, f is analytic at z,.

33



Existence of f'(z)

/ Definition \

Cj}f(z)dz —0 Cauchy-Riemann
conditions
C
Analyticity
Path Existence of derivatives

independence of all orders

34



Y
o Suppose f(z):

(a)is bounded (| /(z)| < M) on the circle of radius R

C
R
(b) has a convergent power series representation: \\
f(z)=>) a,z" (seenote below) \/
n=0

M
S o

inside (and on) the circle of radius R.
Then

Consider this integral:

J‘ f dZ— Za J‘ Zn—m—ldz= 1 \ZVT\iam (This is from the previous line integral example,
27 ZmH 27

ES n=0  |z=R where n-m-1=-1.)

- 1f(2) I
|am|_ | | - m+1 2ﬂ.| R“Zm+1‘|dz| 2 J- Rm+/l/ Kd& ~ om
m—n M
= |a|<Rn, M = Iﬁag‘f z)

Note: If a function is analytic within and on the circle, then it must have a convergent
power (Taylor) series expansion within and on the circle (proven later).

35



If /(z) is analytic and bounded in the entire complex plane, it is a constant.

Because it is analytic in the entire complex plane, f'(z) will
have a power (Taylor) series that converges everywhere (proven later).
Proof l,
. o8}
By the Cauchy Inequality, f(z)= Zanzn
n=0

‘an‘ < %, forany R (solet R — )

=a,=0, n#0

= f(z) =a,

= No "interesting" (i.e., non - constant) function f{z) is analytic and bounded everywhere!

— z" is analytic everywhere but unbounded at infinity

— sinz, e° are analytic everywhere but unbounded at infinity

- ﬁ is bounded at infinity but is not analytic at z = z,
Z—Z

36



(This theorem is due to Gauss™.)

N

The N th degree polynomial, Py (z)= > a,z", ay #0, N >0, has N (complex)roots.

n
n=0

As a corollary, an N" degree polynomial can be
written in factored form as

PN(Z) =aN(Z—Zl)(Z—Zz)"'(Z—ZN)

* The theorem was first proven in Gauss’s doctoral
dissertation in 1799 using an algebraic method. The
present proof, based on Liouville’s theorem, was given
by him later, in 1816.

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Carl Friedrich Gauss

37



Proof (by contradiction)

e First assume the polynomialhas noroots. Then

1. :
is analytic everywhere and
Py(2)
bounded at o« since lim L = lim %
o= Py (2)] o ay ||

e Butby Liouville's theorem, we then have that

is a constant, contrary to our

1
Py(2)

e Hence Py(z) musthave atleast oneroot, say at z = z, . We can then write

assumption N > 0.

Py(z)=(z-2z)Py_(2) (seenote below).
e Repeat the above procedure N —1 times (a total of N times) until we arrive at the conclusion that

Py(2)=(z-2)(z-2)(z- =) B
where F,(z)=F, isaconstant.

Note:

To verify this, we can use the method of “polynomial division” to construct the polynomial P, , (z) in terms of a,,.
An example is given on the next slide.

38



¢ Example (polynomial division)

Assume a third - order polynomial P(z)=z> + a,z> + a,z +a,hasarootatz = z, .
2 1 0 1

Show that P(z) =z —zl)<z2 + bz + bo).

e Equate coefficients other than z° :

2. _ —

e The difference between P(z)and (z - z,) (22 +bz+ bo) must then be a constant.

¢ Since both terms vanish at z = z;, this constant must be zero.

39



Here we give some tips about numerically integrating in the complex plane.

One way is to parameterize the integral using z = z(¢):

- jf NE)a T

ty=t,

SO

<

We assume a given

function and a given path.

40



Summary

b I
I=[f(z)dz = [ F(t dt_jF dij
a t, I, l,
h Note:
where It is not always necessary to treat
the real and imaginary parts of F
dz separately; we can just allow F' to
F(t) = f(z(t)) ; = FR (l‘) L jFI (l‘) be complex in most software.
4

The integrals in ¢ can be preformed in the usual way, using any convenient
scheme for integrating functions of a real variable (Simpson’s rule, Gaussian
Quadrature, Romberg method, etc.).

Note: The variable 7 can be x, or 6, or any other convenient variable.

41



Numerically Integrating Functions in a Region where they are Analytic

If the function f'is analytic, then the
integral is path independent. We y
can choose a straight-line path!

We explore how this works. C b
a
Note: If the path is piecewise linear, we simply add O d

up the results from each linear part of the path. t=0

z=a+b-a), 0<t<L1

%zb—a
dt dz=(b-a)dt = |dz|=|b—d|dt, arg(dz)=arg(b—a)
1=[f(z)d: =J.f(z(t))%dt:(b—a)jf(z(t))dt

42



We can use any method that we
wish to evaluate this integral along
the real axis.

We can also break up the integral into
real and imaginary parts if we wish*:

=(b- ajRef (¢))dt +i(b- ajlmf

Note: The term b-a is complex!

z=a+b-a), 0<t<1

(1)) d

* This is usually not necessary for
numerical integrations, since most
software can handle complex functions.

43



Example:

z=a+(b-a), 0<¢<1

b
I[=(sin(z)dz  a=i, b=2+2i

1
= 2+z jsm z+(2+z)t
0

|

This integral can be evaluated using any numerical integration package.

44



Uniform Partitioning

z=a+b-a), 0<t<1
1

I=(b=a)| f(z(t))at N

0

Note: If we partition uniformly in ¢, b
then we are really partitioning a Az

uniformly along the line with Az.

Az =(b-a)At=(b-a)/ N

(We don'’t have to partition uniformly, but we can if we wish.)

Ar=1/N N segments

45



0 g At=1/N
At tn
— T ¢
Uniform sampling (Midpoint rule): 0o 4 b t I=1y
N . _
I=(b-a)y f(z)as
n=l z=a+(b—-a)t
2" = g4 (b—a)™, tZ”d:At(n—Ej y e
N intervals
N
Using Az=(b—a)At = At=Az/(b—a) _C b=zy
Z) n Az
we then have
a=1z

1z</b/a>n§;f(zi”")§f |



IzMZf(zfid)
n=I
where
2" = a+(b-a)t™
0 y
= a+(b—a)At(n——j N intervals
2 Zy
i { C b=z,
mid
=a+(b—-a)—|n—— Z
a+( a)N( 2) Z Az
1 a=z
=a+AZ(n——j : x
2

47



“Complex Midpoint rule”

N
J 5
]z&Zf(zZ” ) Erroroc‘Az‘
n=l1
Ay — b—a y
N N intervals
Zy
C b=z
mid 1 Zmid
zZ, :a+AZ(n——) Z y Az
)
a:ZO
X

This is the same formula that we usually use for integrating a
function along the real axis using the midpoint rule!
(We essentially have a just rotation of the axis.)

48



“Complex Simpson’s rule”

[z% (f(zo)+4f(zl)+2f(zz)-|—4f(z3)—|—2f(z4)-|—...4f(ZN_1)+f(ZN)) Error oc ‘Az‘4

N = number of segments

= even number Y
N intervals
Zy
Number of sample points = N +1 C b=zy
Z
zn:a+(Az)n, n=0,1...N ZOMZ
a:zo
X




6-point Gaussian Quadrature
1

Sample points Weights f(x)=F(x)
x; =-0.9324695 w; =0.1713245 B4

x, =-0.6612094 w, =0.3607616 x] :(

X, = -0.2386192 Wy = 0.4679139 2

x, =0.2386192 w, =0.4679139

x5 =0.6612094 ws = 0.3607616

x¢ = 0.9324695 we = 0.1713245




Use N intervals on larger (global) interval (a,b):

Sample points

6-point Gaussian Quadrature (cont.)

b N
I= If(x')dx' zZIn
a n=l

Weights

x, = -0.9324695
x, = -0.6612094
x;=-0.2386192
x,=0.2386192
x5 = 0.6612094
xg = 0.9324695

w, = 0.1713245

P

f(x;qmid tX %) Wi

)

N intervals

w, = 0.3607616 |
w, = 0.4679139
w, = 0.4679139
ws = 0.3607616
we = 0.1713245
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“Complex Gaussian Quadrature”

N
_ 12
]—Zln Error oc |Az]
n=1
Az mid Az Nintervals
[, =| — Zf Zy  tXi Wi
2 i=1 2 y Six sample points are used
within each of the N intervals.
(6-point Gaussian Quadrature) o hes
N Uiy
mid AZ)(n=1/2 i
" =a+(Az)(n-1/2) 2
O Az
a :ZO
X
Sample points Weights
x; =-0.9324695 w, =0.1713245 b—a
x, =-0.6612094 w, =0.3607616 Az =
x;=-0.2386192 w; =0.4679139 N

x,=0.2386192
x5 =0.6612094
xg = 0.9324695

w, = 0.4679139
ws =0.3607616
we = 0.1713245

52



Here is an example of a piecewise linear path, used to calculate the electromagnetic field
of a dipole source over the earth (Sommerfeld problem).

Gaussian quadrature (e.g., 6-point Gaussian quadrature) could be used on each of the
linear segments of the path C (breaking each one up into N intervals as necessary to get

good convergence).
kti
i C Sommerfeld path
Y
_ko X |
x

.

kl
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