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Defining Line Integrals in the Complex Plane
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Define on between  and 

Consider the sums

Let the number of subdivisions     
such that  and define

(The result is independent of the 
details of the path subdivision, for 
reasonably well -behaved functions.)
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Equivalence Between Complex and 
Real Line Integrals 

( ) ( ) ( ) ( )

( ) ( )
( )

( )
( ) ( )

( )

( )

0 0 0 0

N N N N

b b

a a

b x ,y b x ,y

a x ,y a x ,y

C C

I f z dz u x, y iv x, y dx idy

u x, y dx v x, y dy i v x, y dx u x, y dy

u dx v dy i v dx u dy

= =

= =

≡ = + +  

= − + +

= − + +

∫ ∫

∫ ∫

∫ ∫

3

C C
I u dx v dy i v dx u dy= − + +∫ ∫

The complex line integral is equivalent to two real line integrals on C.

Denote



Review of Line Integral Evaluation 
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The path C goes 
counterclockwise 
around the circle.



Review of Line Integral Evaluation (cont.)
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While it may be possible to parameterize   using   or   
as the independent parameter,  it must be remembered that the other 
variable (  or  ) is in general always a  of that parameter!function
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The red color denotes functional dependence.



Line Integral Example
1
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Although it is easier to use polar coordinates (see the next example), we use 
Cartesian coordinates to illustrate the previous Cartesian line integral form. 
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The red color denotes functional dependence.



Line Integral Example (cont.)
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Line Integral Example (cont.)

Consider
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Line Integral Example (cont.)
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Line Integral Example
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This is a useful result, and 
it is used to prove the 

“residue theorem”.
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Note: For n = -1, we can use the result on slide 9 (or just evaluate the integral in θ directly).



Cauchy’s Theorem
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x
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− a simply - connected region
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f z f z dz =∫If   is analytic in  then 
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A “simply-connected” region 
means that there are no “holes” in 
the region. (Any closed path can 

be shrunk down to zero size.)

Cauchy’s theorem:



Proof of Cauchy’s Theorem
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Proof of Cauchy’s Theorem (cont.)

( ) ( )u x, y ,v x, y
C
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The proof using Stokes's theorem requires that have 
    continuous first derivatives and that  be smooth . 

The Goursat proof removes these restrictions;  hence the theorem
    is often called the  .Cauchy -Goursat theorem
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Some comments:



Cauchy’s Theorem and Path Independence
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Extension of  Cauchy’s Theorem to 
Multiply-Connected Regions
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Note: The closed path integrals on C1 and C2 are not usually zero!



Extension of  Cauchy’s Theorem to 
Multiply-Connected Regions

x
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1C2C
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1 2C C
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Summary: Result for a multiply-connected region

Note:
The path cannot be 
shrunk down farther 
than the boundary of 

the “island”.



Extension of  Cauchy’s Theorem to 
Multiply-Connected Regions (cont.)
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◊ Example :

1 2
C
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z

π=∫ The integral around the arbitrary closed 
path C must give the same result as the 

integral around the circle (and we already 
know the answer for the circle). 
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Cauchy’s Theorem, Revisited
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Shrink the path down.
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 If a function is analytic everywhere in a simply connected region, we 
can shrink down the path to zero size, which verifies that the line 
integral around a closed path in the region must be zero (since the 
integrand must be continuous and hence finite in the region).



Fundamental Theorem of the
Calculus of Complex Variables
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Suppose we can find    such that    :

This is an extension of the same 
theorem in calculus (for real functions) 

to complex functions.

Assume that f  is analytic in a region  containing the path C.



Fundamental Theorem of the
Calculus of Complex Variables (cont.)
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Choose a particular path C.

( ) a bf z z z
 The integal is path independent
if is analytic on paths from o . t  

Recall :

Proof
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Fundamental Theorem of the
Calculus of Complex Variables (cont.)
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Note: The error in this approximation is proportional to |∆z|
(see next slide).
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Fundamental Theorem of the
Calculus of Complex Variables (cont.)
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Examination of Error in Approximation:

Use Taylor series:



Fundamental Theorem of the Calculus of 
Complex Variables (cont.)
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This permits us to make use of :

etc.

indefinite integrals
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Example:
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(This result is path independent since sin is analytic everywhere!)

Fundamental Theorem of Calculus:



Fundamental Theorem of the Calculus of 
Complex Variables (cont.)
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( ) ( ) ( ) ( ) ( ) ( )
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f z dz F z F z F z f z dz F z= − ⇒ = +∫ ∫

Consider this integral:

Consider two different indefinite integrals:

This integral is some constant.

All indefinite integrals can only differ by a (complex) constant. 



Cauchy Integral Formula
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is assumed analytic in but we multiply by a factor  (which is 

analytic  at and consider the following integral around 

To evaluate this, shrink that path to a small cir
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Cauchy Integral Formula (cont.)
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Note the  result :

    The value of at  is completely determined by its values on  !  
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We have:



Cauchy Integral Formula (cont.)

0z

C

z
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( ) ( )
0
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f z
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i z zπ
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Summary of Cauchy Integral Formula:

The Cauchy integral formula is useful for many purposes in complex variable theory.
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Another way to write it:



Cauchy Integral Formula (cont.)
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Note that if  is outside , the integrand is analytic inside   ; 
hence by the Cauchy's  theorem, we have
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Cauchy Integral Formula (cont.)

( ) ( )0 0

0 0

2
0C

i f z , z Cf z
dz

z z , z C
π

= − 
∫

inside 
outside 
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Application:
This gives us a numerical way to 
determine if a point is inside of a 

region: just set f(z) = 1.
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Cauchy Integral Formula: Summary of Both Cases:



Derivative Formulas
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( ) ( )
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differentiate w.r.t. z0 under the integral sign!
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Since f is analytic inside C, we can start with 
the Cauchy integral formula:0z

C Analytic



Derivative Formulas (cont.)
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Similarly (derivation omitted):
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In general: 
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n
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∫

If f is analytic in a region, then all of the derivatives exist, and 
hence all of the derivatives are analytic as well. 

Note: All derivatives can be determined from f on the boundary!



Morera’s Theorem
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Cauchy's Theorem:

Morera's Theorem:

If   is analytic in a simply - connected 
    region  then 

, in .

 Ιf a function     is continuous in a simply -

connected region   and    for

  







( )C f z

•

 every closed contour  

within ,  then is analytic throughout .   

These theorems are converses of one another!    

 



Proof of Morera’s Theorem

( ) ( ) ( ) ( )

( ) ( )

0 0

0

0
z z

C z z

f z dz f d F z f d .

F z F z

ζ ζ ζ ζ= ≡

−

⇒∫ ∫ ∫

  is path independent, so define 

Note that 

( ) ( ) ( ) ( )
0 0

0

0 0

1z z

z z

F z F z
f d f d

z z z

f

z
ζ ζ ζ ζ

−
= ⇒ =

− −∫ ∫
We can chose a small straight - line path between the two points  since the 

integral is path independent. Along this small path,  is almost constant (from contin
Note : 

( ) ( ) ( ) ( )0

0

0 0

0 0 0

1 z z z

z

f

F z F z f z
f d

z z z z z z
ζ ζ

→−
= →

− − −∫

uity of ).

( )

0

0

0

z

z

f z
d

z z
ζ =

−∫ ( )0z z− ( )

( ) ( )

0

0 0 0

0 0

f z

F z f z . F z

F z . F f . f z

=

′ =

′

⇒

′ =

 Hence  is analytic at any in  (its derivative exists).  But then so are all its 

derivatives. Thus is analytic at But Hence,  is analytic at . 



( )

( ) 0
C

f z

f z dz

C

=∫

Assume that the function   is continuous in a 
region   and
  

for  closed contour within .



every

Note: f  will be analytic if we can prove its derivative exists!

0z



z
ζ
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Properties of Analytic Functions
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Analyticity

Cauchy-Riemann 
conditions( ) 0

C
f z dz =∫

Path 
independence

( )f z′Existence of 

Existence of derivatives 
of all orders

Definition



Cauchy’s  Inequality
( )

( )

( )
0

n
n

n

f z

f z M

f z a z

R

R

∞

=

<

= ∑

 Suppose :

    (a) is bounded ( ) the circle of radius  
(b) has a convergent power s

(see note

.

 below) 

on 

inside a

eeries repr sentation : 

( ) the circld e of r adin n us  o

Note: If a function is analytic within and on the circle, then it must have a convergent 
power (Taylor) series expansion within and on the circle (proven later).
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n n
Ma .
R

≤

( ) 1
1

0

1 1 1
2 2 2

n m
nm

nz R z R

f z
dz a z dz

zπ π π

∞
− −

+
== =

= =∑∫ ∫     2π

( ) ( )
1 1 1

1 1 1
2 2 2

m

m m m m
z R z R

ia

f zf z Ma dz dz
z z Rπ π π+ + +

= =

=⇒ ≤ ≤∫ ∫   R

( )

2

0

max

m

m n

n n z R

Md
R

Ma , M f z
R

π

θ

→

=

=

≤ ≡⇒

∫

(This is from the previous line integral example, 
where n-m-1 = -1.)

Then

x

y

R C

Consider this integral:



Liouville’s Theorem 

( )

( )

0

0 0

n n

n

n

Ma , R R
R

a , n
f z a

f z

z

⇒

≤ → ∞

=

⇒

−

≠

=

⇒

By the Cauchy Inequality,  

No "interesting" (i.e., non -constant) function is analytic and bounded everywhere! 

is analytic everywhere but unbounded at 

for any (so let  )

( ) 02
0

sin
1

zz, e

z z
z z

=−
−

−

infinity 

are analytic everywhere but unbounded at infinity

is bounded at infinity but is not analytic at 

 

Because it is analytic in the entire complex plane, f (z) will
have a power (Taylor) series that converges everywhere (proven later). 

( )
0

n
n

n
f z a z

∞

=
= ∑
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Proof

If f(z) is analytic and bounded in the entire complex plane, it is a constant.



The Fundamental Theorem of Algebra

(This theorem is due to Gauss*.)

Carl Friedrich Gauss

( ) ( )( ) ( )1 2N N NP z a z z z z z z= − − − 

As a corollary, an Nth degree polynomial can be 
written in factored form as

* The theorem was first proven in Gauss’s doctoral 
dissertation in 1799 using an algebraic method. The 
present proof, based on Liouville’s theorem, was given 
by him later, in 1816.

(his signature)http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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( )
0

0 0
N

n
N n N

n
N P z a z , a , N , N

=
= ≠ >∑The th degree polynomial, has (complex) roots.



The Fundamental Theorem of Algebra (cont.)

( )

( )

1

1 1lim lim 0

1

N

Nz zN N

N

P z

.
P z a z

P

→∞ →∞
∞

•

•

= →

First assume the polynomial has  roots.   Then is analytic everywhere and 

bounded at since  

But by Liouville's theorem, we then have that 

(by contradiction) Proof 

no

( )

( )
( ) ( )

1

1 1

0

( ) 

1

N

N N

z
N .

P z z z

P z z z P z

N
−

>

=

=

•

−

−

•

is a constant, contrary to our 

assumption
Hence  must have at least one root, say at  . We can then write 

(see note below).

Repeat the above procedure times (a total of 

( ) ( ) ( ) ( )
( )

1 2 0

0 0

N N

N

P z z z z z z z P

P z P .

= − − −

=



 times) until we arrive at the conclusion that 

where  is a constant  

Note:

To verify this, we can use the method of “polynomial division” to construct the polynomial PN-1 (z) in terms of an. 
An example is given on the next slide. 
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The Fundamental Theorem of Algebra (cont.)

( )
( ) ( ) ( )

3 2
2 1 0 1

2
1 1 0

0

2
2 1 1 1 2 1

1
1 0 1 1 0 1

:

.

:

P z z a z a z a z z

P z z z z b z b .

z

z a b z b a z

z a b b z b a

•

= + + + =

= − + +

= − → = +

= − → =

◊

Assume a third - order polynomial has a root at 

Show that 

Equate coefficients other than :

 Example (polynomial division)

( ) ( ) ( )
1 1

2
1 1 0

1

b z

P z z z z b z b

z z

•

•

+

− + +

=

The difference between  and must then be a constant.

. Since both terms vanish at , this constant must be zero
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Numerical Integration in the Complex Plane

40

Here we give some tips about numerically integrating in the complex plane. 

( )
b

a

I f z dz≡ ∫

( )( )
b

a

t

t

dzI f z t dt
dt

 =  
 ∫

One way is to parameterize the integral using z = z(t):

( )
b

a

t

t

I F t dt= ∫

where
( ) ( )( ) ( ) ( )R I

dzF t f z t F t iF t
dt

 ≡ = + 
 

so

( ) ( )
b b

a a

t t

R I
t t

I F t dt i F t dt= +∫ ∫

1t
2t 3t

1Nt −C

nt

x

y

0t

f Nt t=

( )( ), ( )x t y t

a

b

We assume a given 
function and a given path.

0a

b f

t t
t t

=

=

( )z z t=



Numerical Integration in the Complex Plane (cont.)
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The integrals in t can be preformed in the usual way, using any convenient 
scheme for integrating functions of a real variable (Simpson’s rule, Gaussian 
Quadrature, Romberg method, etc.).

( ) ( ) ( ) ( )
b b b

a a a

t t tb

R I
a t t t

I f z dz F t dt F t dt i F t dt= = = +∫ ∫ ∫ ∫

( ) ( )( ) ( ) ( )R I
dzF t f z t F t iF t
dt

 ≡ = + 
 

Summary

Note: The variable t can be x, or θ, or any other convenient variable.

where Note:
It is not always necessary to treat 
the real and imaginary parts of F
separately; we can just allow F to 

be complex in most software.



Numerical Integration of Analytic Functions
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If the function f is analytic, then the 
integral is path independent. We 
can choose a straight-line path!

( ) 0 1z a b a t , t
dz b a
dt

= + − ≤ ≤

= −

Note: If the path is piecewise linear, we simply add 
up the results from each linear part of the path.

Numerically Integrating Functions in a Region where they are Analytic

( ) ( )( ) ( ) ( )( )
1 1

0 0

b

a

dzI f z dz f z t dt b a f z t dt
dt

≡ = = −∫ ∫ ∫

We explore how this works.

( ) ( ) ( )= , arg argdz b a dt dz b a dt dz b a= − ⇒ − = −

x

y

0t =

1t =

C

a
b

dz
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( ) ( )( )
1

0

I b a f z t dt= − ∫

x

y

0t =

1t =

C
a

b
We can use any method that we 
wish to evaluate this integral along 
the real axis. 

( ) ( )( ) ( ) ( )( )
1 1

0 0

Re ImI b a f z t dt i b a f z t dt= − + −∫ ∫

We can also break up the integral into 
real and imaginary parts if we wish*:

Note: The term b-a is complex!

( ) 0 1z a b a t, t= + − ≤ ≤

* This is usually not necessary for 
numerical integrations, since most 
software can handle complex functions.

Numerical Integration of Analytic Functions (cont.)
Summary:
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( ) 0 1z a b a t, t= + − ≤ ≤

Numerical Integration of Analytic Functions (cont.)
Example:

( )sin
b

a

I z dz= ∫ 2 2a i, b i= = +

( ) ( )( )
1

0

I b a f z t dt= − ∫

( ) ( )
1

0

2 sin (2 + )I i i i t dt= + +∫
x

y

C

a i=

2 2b i= +

This integral can be evaluated using any numerical integration package.
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( ) ( )( )
1

0

I b a f z t dt= − ∫

Note: If we partition uniformly in t, 
then we are really partitioning 

uniformly along the line with ∆z. 

( ) ( ) /z b a t b a N∆ = − ∆ = −

(We don’t have to partition uniformly, but we can if we wish.)

Uniform Partitioning

x

y

0t =

1t =C

a
b

z∆

( ) 0 1z a b a t, t= + − ≤ ≤

Numerical Integration of Analytic Functions (cont.)

t
0 1

t∆

1t 2t nt

1/t N∆ = N segments
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( ) ( )( )
1

0

I b a f z t dt≡ − ∫

( ) ( )z b a t t z / b a∆ = − ∆ ⇒ ∆ = ∆ −

Uniform sampling (Midpoint rule):

( ) ( )
1

N
mid
n

n
I b a f z t

=
≈ − ∆∑

1( )
2

mid mid mid
n n nz a b a t , t t n = + − = ∆ − 

 

Using

( ) ( )
1

N
mid
n

n

zI b a f z
b a=

∆
≈ −

−∑
x

y

C

0a z=

Nb z=

z∆
mid
nz

0z

Nz
N intervals

we then have

( )z a b a t= + −

mid
nt

t
0 1 Nt=

t∆

1t 2t nt

1t / N∆ =

Numerical Integration of Analytic Functions (cont.)
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( )
1

N
mid
n

n
I z f z

=

≈ ∆ ∑

x

y

C

0a z=

Nb z=

z∆
mid
nz

0z

Nz
N intervals

where

( )
1( )
2

1 1( )
2

1
2

mid mid
n nz a b a t

a b a t n

a b a n
N

a z n

= + −

 = + − ∆ − 
 

 = + − − 
 

 = + ∆ − 
 

Numerical Integration of Analytic Functions (cont.)
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b az
N
−

∆ =

“Complex Midpoint rule”

( )
1

N
mid
n

n
I z f z

=

≈ ∆ ∑

This is the same formula that we usually use for integrating a 
function along the real axis using the midpoint rule! 

(We essentially have a just rotation of the axis.)

x

y

C

0a z=

Nb z=

z∆
mid
nz

0z

Nz
N intervals

1
2

mid
nz a z n = + ∆ − 

 

Numerical Integration of Analytic Functions (cont.)

2Error z∝ ∆
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 1 2 3 4 14 2 4 2 4
3 N N
zI f z f z f z f z f z f z f z−

∆
≈ + + + + + +

“Complex Simpson’s rule”

N = number of segments
= even number

( ) 0 1nz a z n, n , , N= + ∆ = 

b az
N
−

∆ =

x

y

C

0a z=

Nb z=

z∆nz
0z

N intervals
Nz

Number of sample points = N +1

Numerical Integration of Analytic Functions (cont.)

4Error z∝ ∆
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6-point Gaussian Quadrature

x1 = -0.9324695
x2 = -0.6612094
x3 = -0.2386192
x4 = 0.2386192
x5 = 0.6612094
x6 = 0.9324695   

w1 = 0.1713245
w2 = 0.3607616
w3 = 0.4679139
w4 = 0.4679139
w5 = 0.3607616
w6 = 0.1713245   

Sample points Weights

Numerical Integration of Analytic Functions (cont.)

( ) ( )
1 6

11
i i

i
F x dx F x w

=−

≈∑∫

2 2
B A A Bx x− +   ′ = +   

   
Use

( ) ( ) ( ) ( )
1 6 6

1 112 2 2

B

i i i i
i iA

B A B A B Af x dx F x dx F x w f x w
= =−

− − −     ′ ′ ′= ≈ =     
     

∑ ∑∫ ∫

( ) ( )1,1 ,x x A B′∈ − ⇒ ∈

2
B Adx dx− ′ =  

 

( ) ( )f x F x′ =

2 2i i
B A A Bx x− +   ′ = +   
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x1 = -0.9324695
x2 = -0.6612094
x3 = -0.2386192
x4 = 0.2386192
x5 = 0.6612094
x6 = 0.9324695   

w1 = 0.1713245
w2 = 0.3607616
w3 = 0.4679139
w4 = 0.4679139
w5 = 0.3607616
w6 = 0.1713245   

Sample points Weights

Numerical Integration of Analytic Functions (cont.)

2 2i i
B A A Bx x− +   ′ = +   

   
Recall :

( )
1

b N

n
na

I f x dx I
=

′ ′= ≈∑∫

6

12 2
mid

n n i i
i

x xI f x x w
=

′∆ ∆   ′≈ +   
   

∑

Use N intervals on larger (global) interval (a,b):

mid
nx′

x′
a b

x∆

A B

N intervals

6-point Gaussian Quadrature (cont.)

( ) ( )
6

12

B

i i
iA

B Af x dx f x w
=

− ′ ′ ′=  
 

∑∫
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1

N

n
n

I I
=

=∑

“Complex Gaussian Quadrature”

b az
N
−

∆ =

6

12 2
mid

n n i i
i

z zI f z x w
=

∆ ∆   ≈ +   
   

∑

x1 = -0.9324695
x2 = -0.6612094
x3 = -0.2386192
x4 = 0.2386192
x5 = 0.6612094
x6 = 0.9324695   

w1 = 0.1713245
w2 = 0.3607616
w3 = 0.4679139
w4 = 0.4679139
w5 = 0.3607616
w6 = 0.1713245   

(6-point Gaussian Quadrature)

Sample points Weights

( ) ( )1 2mid
nz a z n /= + ∆ −

x

y

C

0a z=

Nb z=

z∆
0z

Six sample points are used  
within each of the N intervals.

Nz
mid
nz

N intervals

Numerical Integration of Analytic Functions (cont.)

12Error z∝ ∆
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Here is an example of a piecewise linear path, used to calculate the electromagnetic field 
of a dipole source over the earth (Sommerfeld problem).

Gaussian quadrature (e.g., 6-point Gaussian quadrature) could be used on each of the 
linear segments of the path C (breaking each one up into N intervals as necessary to get 
good convergence).

tik

0k
0−k

trk
1k

1−k
C Sommerfeld path

Numerical Integration of Analytic Functions (cont.)
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