
ECE 6382 

Functions of a Complex 
Variable as Mappings

Notes are adapted from D. R. Wilton, Dept. of ECE

1

David R. Jackson

Fall 2023

Notes 4



A Function of a Complex Variable as a Mapping

( )w f z
z w

= A function of a complex variable, , is usually viewed 
as a  from the complex    plane to the complex   plane.mapping
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Simple Mappings: Translations

A
w A z= +

 Translation:
 

where  is a complex constant. 
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• The mapping translates every point in the   plane
by the "vector"  
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Simple Mappings: Rotations

( ) ( )ii i iw e z e re re α θα α θ

α

+
= = =

 Rotation:
 

where  is a  constant. real

z .α
• The mapping rotates every point in 

the   plane through an angle   
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Simple Mappings: Dilations

( ) ( )i iw az a re ar e

a

θ θ= = =

 Dilation (stretching) :

 

where  is a  constant. real

z z
a

• The mapping  magnifies the magnitude of a point 
in the complex plane by a facto

 
    r  .
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Note:
u ax, v ay

du a dx
dv a dy

= =

=
⇒  =

z

z
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y w
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v ww za=

(All distances are uniformly stretched.)



A General Linear Transformation (Mapping) is a 
Combination of Translation, Rotation, and Dilation



 ( )Arg Arg i Bi B iw A Bz

A

A B e r

B

e B r e

,

A θθ +
= + = + = +





rotationdilation

translation

Linear transformation:

 

where  are complex constants . 

6

Shapes do not change under a linear transformation!
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Simple Mappings: Inversions

1 1 1 i
iw e

z rre
θ

θ
−= = =

 Inversion:
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 Points outside the unit circle get mapped to the inside of the unit circle. 
 Points inside the unit circle get mapped to the outside of the unit circle. 

The magnitude becomes the reciprocal, and 
the phase angle becomes the negative.

z x iy= +

Re
1

1w / z=

Im

θ

θ

r



Simple Mappings: Inversions

1 1 1 i
iw e

z rre
θ

θ
−= = =

 Inversion:

 

0z x iy= +

Re
0x

1

1 z

Im

Inverson: a straight line maps to a circle 

z

Re

Im

11 z

Inversion: circle - preserving property
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Inversions have a “circle preserving” property, i.e., circles always map to circles 
(Straight lines are a special case where the radius of the circle is infinity.)



Circle Property of Inversion Mapping: Proof
1w
z

=

9

2 2 2 2
1 1 u vz x iy x , y
w u iv u v u v

−
= ⇒ + = ⇒ = =

+ + +

Consider a circle: ( ) ( )2 2 2
0 0x x y y a− + − =

2 2
1 2 3 0x y a x a y a+ + + + =This is in the form

2 2

1 2 32 2 2 2 2 2 2 2 0u v u va a a
u v u v u v u v

− −       + + + + =       + + + +       

Hence

(This maps circles into circles.)

J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th Ed., McGraw-Hill, 2013.

1 0

2 0
2 2 2

3 0 0

2
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a x
a y

a x y a

≡ −

≡ −

≡ + −



Circle Property of Inversion Mapping: Proof  (cont.)
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Multiply by  u2 + v2:

2 2

1 2 32 2 2 2 2 2 2 2 0u v u va a a
u v u v u v u v

− −       + + + + =       + + + +       

( ) ( ) ( )
2 2

2 2
1 2 32 2 2 2 0u v a u a v a u v

u v u v
   

+ + + − + + =   
+ +   

( ) ( ) ( )2 2
1 2 31 0a u a v a u v+ + − + + =

This is in the form of a circle (see next slide). 

or



Circle Property of Inversion Mapping: Proof  (cont.)
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( ) ( ) ( )2 2
1 2 31 0a u a v a u v+ + − + + =

This is in the form of a circle: 

( ) ( ) ( )2 2
1 2 0 0u v a u a v a′ ′ ′+ + + − + =

Divide by  a3:
1 1 3

2 2 3

0 31

a a / a
a a / a
a / a

′ ≡
′ ≡
′ ≡

( ) ( )2 2 2
0 0u u v v R− + − =

( ) ( )
2 2

2 2 1 2
1 2 02 2 0

4 4
a au a / v a / a

 ′ ′
′ ′ ′+ + − + − − =  

 

0 1

0 2
2 2

2 1 2
0

2
2

4 4

u a /
v a /

a aR a

′≡ −
′≡ +

′ ′
′≡ + −

Complete the square: 

( )
( )

( ) ( )

2 2 2 2 22 22 2 20 0 0 02 0 01 2
2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 233 3 0 00 0 0 0 0 0

1 1
4 4

x y x y ax ya a aR
aa a x y ax y a x y a x y a

+ − + −+
= + − = − = =

+ −+ − + − + −



Simple Mappings: Inversions (cont.)

1 1 1 i
iw e

z rre
θ

θ
−= = = Geometrical construction of the inversion:  
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Shapes are not preserved!

Note the circular boundaries for the region!
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Bilinear (a.k.a. Fractional or Mobius) Transformation

( )
0D ,

A BC D B D C DzA Bz A BC Dw B D
C Dz C Dz C Dz

≠

− + ++ −
= = = +

+ + +

 Note that if 
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This is a sequence of : linear transformation; inversion; dilation and rotation; translation.

Since each transformation preserves circles,  bilinear transformations also
     have the circle -preserving z

w
 property :  circles in the   plane are mapped into circles in 

     the  plane (with straight lines thought of as circles of infinite radius).  

1 A BC D A BC Dz C Dz B D
C Dz C Dz C Dz

− −
⇒ + ⇒ ⇒ ⇒ +

+ + +

:z w⇒Steps in

A Bzw
C Dz
+=
+ (A, B, C, D are complex constants)



Bilinear Transformation Example: The Smith Chart

( ) ( ) ( ) ( )

( )

( )

0

0

Z d
z r jx Z d R d jX d z - d

Z
Z , d

d

= + = = + =

Γ

Γ =

 Let where   is the impedance at on a   

transmission line of characteristic impedance and  is the generalized 
reflection coefficient :

                

 
 

      

 

   

 
 

  

   

( )
( )

( )
( )

0

0

1 1
1 1

Z d Z z d z
Z d Z z d z

− − −
= Γ =

+ + +
or sim ly  p

1
1

z
z
−

Γ =
+

   

For an interpretation of Möbius transformations as projections on a sphere, see
http://www.youtube.com/watch?v=JX3VmDgiFnY.

Γ

ReΓ

ImΓ

z
r

x

Horizontal and vertical ines (contant reactance and resistance) are mapped into circles.
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Normalized 
impedance 

plane

Reflection 
coefficient 

plane



The Squaring Transformation

( ) 2 2 2iw f z z r e θ= = =

y

z w
z w

•
•
•

The transformation maps  the - plane  into the  - plane.
The entire  - plane  covers the - plane  twice.
The transformation is said  to be 

half entire

two - to - one.
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( )z, z w− →  
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z

z−
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Another Representation of the Squaring 
Transformation

( ) 2 2 2iw f z z r e θ= = =

x

y

1 2 3

3

2

1

9

4

1

90o
180o

270o

360o

-180o-270o

-360o 0o

-90o

2z

( ) 2w f z z= =Constant amplitude and phase contours of 
16

3D plot of magnitude



The Square Root Transformation

( )
2

2 21 2 0 1
kpi i/w f z z re re , k ,

θ πθ +

= = = = =
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We say that there are two “branches” (i.e., values) of the square root function.
 Note that for the principal branch, the square root function is not continuous on the 

negative real axis. (There is a “branch cut” there.)

x

y
z

z

Principal branch

Second 
branch

0k
π θ π− < ≤

=

w

u

v

w

w

Re 0≥

0 2
1k

θ π< ≤
=

Note: The value of z1/2 on one branch is the 
negative of the value on the other branch.

• The transformation is said  to be one - to - two

pπ θ π− < ≤



The Square Root Transformation (cont.)

18

x

y
z

z

Principal branch

0k
π θ π− < ≤

=

The principal square root is denoted as z

The principal branch is the 
choice in MATLAB and most 

programming languages! 

1 1

1
1

2
1

2

i
ii

ii

=

− =
+

=

−
− =Re 0z ≥Note:

w

u

v

w

Re 0≥

( )
2

2 21 2 0 1
kpi i/w f z z re re , k ,

θ πθ +

= = = = = pπ θ π− < ≤



x

y

1 2 3

3

2

1
1

22.5o

45o

67.5o

90o

-45o-67.5o

-90o 0o

2
3

-22.5o

Principal branch, k = 0

x

y

1 2 3

3

2

1
1

202.5o

225o

247.5o

270o

135o

90o 180o

2
3

157.5o

Other branch, k = 1

112.5o
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The Square Root Transformation (cont.)

( )
2

2 21 2 0 1
kpi i/w f z z re re , k ,

θ πθ +

= = = = = pπ θ π− < ≤



Constant u and v Contours are Orthogonal 
( ) ( )z u x, y v x, y

u uˆ ˆu x y
x y
v vˆ ˆv x y
x y

∂ ∂
= +
∂ ∂
∂ ∂

= +
∂ ∂







∇

∇

Consider contours in the plane on which the real quantities  and  
are constant.

The directions normal to these contours are along the gradient direction :  

 

T

v uu u u u uˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆu v x y x y x y x y
x y x y

v u
y xx y

       ∂ ∂ ∂ ∂ ∂
⋅ = + ⋅ + = + ⋅ + = −       ∂ ∂ ∂ ∂       

∂∂
∂

∂
∂∂ ∂

∂
−∇ ∇

he gradients, and therefore the contours, are orthogonal (perpendicular) by the C. R. conditions :
  C.R. 
cond's u

y x
∂

∂ ∂
u u
y x
∂ ∂

+
∂ ∂

0=

x

y

z
u∇

constantu =

constantv =

v∇
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( ) ( ) ( )w u x, y iv x, y f z= + = (analytic)



Constant u and v Contours are Orthogonal (cont.)

Example: 2w z=

( ) ( ) ( )2 2 2 2w x iy x y i xy= + = − +

( )
( )

2 2

2

u x, y x y

v x, y xy

= −

=
so

x

y

2 2
1constant:u x y c= − =

2constant:v xy c= =
Also, recall that

( )
( )

2

2

0

0

u x, y

v x, y

∇ =

∇ =
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Mappings of Analytic Functions are Conformal
(Angle-Preserving)  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1 2

1 0 1 1 0 1 1 1 0

2 0 2 2 0 2 2 2 0

2

arg arg arg

arg arg arg

arg

C C z

w u iv

w f z z w f z z , z C z

w f z z w f z z , z C z

w

= +

′ ′∆ ≈ ∆ ∆ ≈ + ∆ ∆

′ ′∆ ≈ ∆ ∆ ≈ + ∆ ∆

∆ −

⇒

⇒

⇒

 Consider a pair of  intersecting paths in the plane mapped 
onto the   plane.

alo

l

,

n

 

ng from

a o g from

( ) ( ) ( )1 2 1arg arg argw z z∆ ≈ ∆ − ∆

( )w f z=
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( )0 0f z′ ≠

β γ=Hence

x

y
z

1C

2C

γ

γ
0z 1z∆2z∆

u

v w
1Γ

2Γ
0wβ

β

1w∆

2w∆

This assumes that f ′ is 
not zero.



Constant u and v Contours are Orthogonal
(Revisited) 

x

y

z

constantu =

constantv =

u

v

w

Since the contours  u = constant and v = constant are (obviously) 
orthogonal in the w plane, they must remain orthogonal in the z plane.

0dz
dw

≠Assumption :

( )w f z=
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Constant |w| and arg(w) Contours are also Orthogonal 

( )1

iw Re R

z f w z

w

−

Θ= Θ

=





If the constant and  contours are (obviously) orthogonal in the  plane.

If  is a mapping back to the plane, the mapping preserves the orthogonality. 

w

u

v

0dz
dw

≠Assumption :

24

x

y

z

constantR =

constantΘ =

Note:
The constant Θ (red) and constant 

R (green) curves are obviously 
orthogonal in the w plane.



The Logarithm Function
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( )lnw z=

( )

( ) ( )

2

ln ln 2 0 1 2

p k

p

iiz z e z e

z z i k , k , , ,

θ πθ

θ π

+
= =

⇒ = + + = ± ± 

There are an infinite number of branches (values) for the ln function!



Arbitrary Powers of Complex Numbers

( )2ln p kiz iz e z z e z e θ πθ + = = = 
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aw z= (a may be complex)

This has an infinite number of branches unless ak = integer for some 
value of k = q, i.e, a is real and rational:

( ) ( ) 2ln 2 lnln ln p p
a ia i aka z ai k a za z a zz e e e e e eθ πθ π+ +

= = = =

Use

( )pa p,q
q

= are integers

(In this case there are q branches.)



Arbitrary Powers of Complex Numbers (cont.)
( ) ( )

( )

( )

( )

22 2 2
33 3

2 2
3 3

2 2 22
3 3 3

2 2 42
3 3 3

2 2 2 2
2 23 3 3 3

2 3

ln2 3

ln2 3

ln2 3

ln2 3

ln ln2 3

2 3

20 0
3

2 21
3 3

2 4

2

2
3 3

3 2
3

p

p

p

p

p p

i ki

i

i i

i i

i ii

/

z/

z/

z/

z/

z z/

f z z a /

z e e e

k k z e e

k k z e e e

k k z e

k

e e

z e e e e ek

πθ

θ

θ π

θ π

θ θπ

 
 
 

= =

 
=  
 


=

=



= = ⇒ =

= = ⇒ =

= ⇒ =

= == ⇒ ←
star

Example : 

2 8 24 2
3 3 3

k k= = = + ⇒ 



ts
 

r

g

e

i

p

a

e

p

a

r

t

e e t !

s! 

n

For z p/q the repetition period is k = q (if p and q have
no common factors). For irrational powers, the
repetition period is infinite; i.e., values never repeat!
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( )2

2ln

p

p

k

ia i ak

i

a za

z z e

z e e e

θ π

θ π

+
=

=

Recall :
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