

David R. Jackson

Notes 4

Functions of a Complex Variable as Mappings

Notes are adapted from D. R. Wilton, Dept. of ECE

A Function of a Complex Variable as a Mapping

- A function of a complex variable, $w=f(z)$, is usually viewed as a mapping from the complex z plane to the complex w plane.

For example, $w=z^{3}$

Simple Mappings: Translations

- Translation:

$$
w=A+z
$$

where A is a complex constant.

- The mapping translates every point in the z plane by the "vector" A.

Simple Mappings: Rotations

Rotation:

$$
w=e^{i \alpha} z=e^{i \alpha}\left(r e^{i \theta}\right)=r e^{i(\alpha+\theta)}
$$

where α is a real constant.

- The mapping rotates every point in the z plane through an angle α.

Simple Mappings: Dilations

- Dilation (stretching):

$$
w=a z=a\left(r e^{i \theta}\right)=(a r) e^{i \theta}
$$

where a is a real constant.
Note:

$$
\begin{array}{r}
u=a x, v=a y \\
\Rightarrow\left\{\begin{array}{l}
d u=a d x \\
d v=a d y
\end{array}\right.
\end{array}
$$

(All distances are uniformly stretched.)

- The mapping magnifies the magnitude $|z|$ of a point z in the complex plane by a factor a.

A General Linear Transformation (Mapping) is a Combination of Translation, Rotation, and Dilation

- Linear transformation:

$$
w=A+B z=A+|B| e^{i \operatorname{Arg} B} r e^{i \theta}=\underbrace{A}_{\text {translation }}+\overbrace{|B| r}^{\text {dilation }} i e^{i \overbrace{(\theta+\operatorname{Arg} B)}^{\text {rotation }}}
$$

where A, B are complex constants.

Shapes do not change under a linear transformation!

Simple Mappings: Inversions

- Inversion:

$$
w=\frac{1}{z}=\frac{1}{r e^{i \theta}}=\frac{1}{r} e^{-i \theta}
$$

The magnitude becomes the reciprocal, and the phase angle becomes the negative.

- Points outside the unit circle get mapped to the inside of the unit circle.
- Points inside the unit circle get mapped to the outside of the unit circle.

Simple Mappings: Inversions

- Inversion:

$$
w=\frac{1}{z}=\frac{1}{r e^{i \theta}}=\frac{1}{r} e^{-i \theta}
$$

Inverson: a straight line maps to a circle

Inversion : circle-preserving property

Inversions have a "circle preserving" property, i.e., circles always map to circles (Straight lines are a special case where the radius of the circle is infinity.)

Circle Property of Inversion Mapping: Proof

$$
\begin{array}{r}
w=\frac{1}{z} \quad \text { (This maps circles into circles.) } \\
z=\frac{1}{w} \Rightarrow x+i y=\frac{1}{u+i v} \Rightarrow x=\frac{u}{u^{2}+v^{2}}, y=\frac{-v}{u^{2}+v^{2}}
\end{array}
$$

$$
\text { Consider a circle: } \quad\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=a^{2}
$$

This is in the form $x^{2}+y^{2}+a_{1} x+a_{2} y+a_{3}=0$

$$
\begin{aligned}
& a_{1}=-2 x_{0} \\
& a_{2} \equiv-2 y_{0} \\
& a_{3} \equiv x_{0}^{2}+y_{0}^{2}-a^{2}
\end{aligned}
$$

Hence

$$
\left(\frac{u}{u^{2}+v^{2}}\right)^{2}+\left(\frac{-v}{u^{2}+v^{2}}\right)^{2}+a_{1}\left(\frac{u}{u^{2}+v^{2}}\right)+a_{2}\left(\frac{-v}{u^{2}+v^{2}}\right)+a_{3}=0
$$

Circle Property of Inversion Mapping: Proof (cont.)

$$
\left(\frac{u}{u^{2}+v^{2}}\right)^{2}+\left(\frac{-v}{u^{2}+v^{2}}\right)^{2}+a_{1}\left(\frac{u}{u^{2}+v^{2}}\right)+a_{2}\left(\frac{-v}{u^{2}+v^{2}}\right)+a_{3}=0
$$

Multiply by $u^{2}+v^{2}$:

$$
\left(\frac{u^{2}}{u^{2}+v^{2}}\right)+\left(\frac{v^{2}}{u^{2}+v^{2}}\right)+a_{1}(u)+a_{2}(-v)+a_{3}\left(u^{2}+v^{2}\right)=0
$$

or

$$
1+a_{1}(u)+a_{2}(-v)+a_{3}\left(u^{2}+v^{2}\right)=0
$$

This is in the form of a circle (see next slide).

Circle Property of Inversion Mapping: Proof (cont.)

$$
1+a_{1}(u)+a_{2}(-v)+a_{3}\left(u^{2}+v^{2}\right)=0
$$

Divide by a_{3} :

$$
\left(u^{2}+v^{2}\right)+a_{1}^{\prime}(u)+a_{2}^{\prime}(-v)+a_{0}^{\prime}=0
$$

$$
\begin{aligned}
a_{1}^{\prime} & \equiv a_{1} / a_{3} \\
a_{2}^{\prime} & \equiv a_{2} / a_{3} \\
a_{0}^{\prime} & \equiv 1 / a_{3}
\end{aligned}
$$

Complete the square:

$$
\left(u+a_{1}^{\prime} / 2\right)^{2}+\left(v-a_{2}^{\prime} / 2\right)^{2}+\left(a_{0}^{\prime}-\frac{a_{1}^{\prime 2}}{4}-\frac{a_{2}^{\prime 2}}{4}\right)=0
$$

This is in the form of a circle:

$$
\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}=R^{2}
$$

$$
\begin{aligned}
& u_{0} \equiv-a_{1}^{\prime} / 2 \\
& v_{0} \equiv+a_{2}^{\prime} / 2 \\
& R^{2} \equiv \frac{a_{1}^{\prime 2}}{4}+\frac{a_{2}^{\prime 2}}{4}-a_{0}^{\prime}
\end{aligned}
$$

$$
R^{2}=\frac{a_{1}^{2}}{4 a_{3}^{2}}+\frac{a_{2}^{2}}{4 a_{3}^{2}}-\frac{1}{a_{3}}=\frac{x_{0}^{2}+y_{0}^{2}}{\left(x_{0}^{2}+y_{0}^{2}-a^{2}\right)^{2}}-\frac{1}{x_{0}^{2}+y_{0}^{2}-a^{2}}=\frac{x_{0}^{2}+y_{0}^{2}-\left(x_{0}^{2}+y_{0}^{2}-a^{2}\right)}{\left(x_{0}^{2}+y_{0}^{2}-a^{2}\right)^{2}}=\frac{a^{2}}{\left(x_{0}^{2}+y_{0}^{2}-a^{2}\right)^{2}}
$$

Simple Mappings: Inversions (cont.)

- Geometrical construction of the inversion: $w=\frac{1}{z}=\frac{1}{r e^{i \theta}}=\frac{1}{r} e^{-i \theta}$

Note the circular boundaries for the region!

$$
w=\frac{A+B z}{C+D z} \quad(A, B, C, D \text { are complex constants })
$$

- Note that if $D \neq 0$,

$$
w=\frac{A+B z}{C+D z}=\frac{A-B C / D+B / D(C+D z)}{C+D z}=\frac{A-B C / D}{C+D z}+B / D
$$

Steps in $z \Rightarrow w:$

$$
z \Rightarrow C+D z \Rightarrow \frac{1}{C+D z} \Rightarrow \frac{A-B C / D}{C+D z} \Rightarrow \frac{A-B C / D}{C+D z}+B / D
$$

- This is a sequence of : linear transformation; inversion; dilation and rotation; translation.
- Since each transformation preserves circles, bilinear transformations also have the circle - preserving property: circles in the z plane are mapped into circles in the w plane (with straight lines thought of as circles of infinite radius).

Bilinear Transformation Example: The Smith Chart

- Let $z=r+j x=\frac{Z(d)}{Z_{0}}$ where $Z(d)=R(d)+j X(d)$ is the impedance at $z=-d$ on a transmission line of characteristic impedance Z_{0}, and $\Gamma(d)$ is the generalized reflection coefficient:

$$
\Gamma(d)=\frac{Z(d)-Z_{0}}{Z(d)+Z_{0}}=\frac{z(d)-1}{z(d)+1} \text { or simply } \Gamma=\frac{z-1}{z+1}
$$

$$
\begin{aligned}
& r \equiv R / Z_{0} \\
& x \equiv X / Z_{0}
\end{aligned}
$$

Horizontal and vertical ines (contant reactance and resistance) are mapped into circles.
For an interpretation of Möbius transformations as projections on a sphere, see http://www.youtube.com/watch?v=JX3VmDgiFnY.

$$
w=f(z)=z^{2}=r^{2} e^{i 2 \theta}
$$

$$
(z,-z) \rightarrow w
$$

- The transformation maps half the z-plane into the entire w-plane.
- The entire z-plane covers the w-plane twice.
- The transformation is said to be two - to - one.

Another Representation of the Squaring Transformation

$$
w=f(z)=z^{2}=r^{2} e^{i 2 \theta}
$$

Constant amplitude and phase contours of $w=f(z)=z^{2}$

The Square Root Transformation

* We say that there are two "branches" (i.e., values) of the square root function.
* Note that for the principal branch, the square root function is not continuous on the negative real axis. (There is a "branch cut" there.)
- The transformation is said to be one - to - two

The Square Root Transformation (cont.)

$$
w=f(z)=z^{1 / 2}=\sqrt{r} e^{i \frac{\theta}{2}}=\sqrt{r} e^{i \frac{\theta_{p}+2 \pi k}{2}}, k=0,1 \quad-\pi<\theta_{p} \leq \pi
$$

The Square Root Transformation (cont.)

$$
w=f(z)=z^{1 / 2}=\sqrt{r} e^{i \frac{\theta}{2}}=\sqrt{r} e^{i \frac{\theta_{p}+2 \pi k}{2}}, k=0,1 \quad-\pi<\theta_{p} \leq \pi
$$

Principal branch, $\boldsymbol{k}=\mathbf{0}$

Other branch, $\boldsymbol{k}=\mathbf{1}$

Constant u and v Contours are Orthogonal

- Consider contours in the z plane on which the real quantities $u(x, y)$ and $v(x, y)$ are constant.

- The directions normal to these contours are along the gradient direction:

$$
\begin{aligned}
& \nabla u=\frac{\partial u}{\partial x} \underline{\hat{x}}+\frac{\partial u}{\partial y} \underline{\hat{y}} \\
& \nabla v=\frac{\partial v}{\partial x} \underline{\hat{x}}+\frac{\partial v}{\partial y} \underline{\hat{y}}
\end{aligned}
$$

- The gradients, and therefore the contours, are orthogonal (perpendicular) by the C.R. conditions :
$\nabla u \cdot \nabla v=\left(\frac{\partial u}{\partial x} \underline{\hat{x}}+\frac{\partial u}{\partial y} \underline{\hat{y}}\right) \cdot\left(\frac{\partial v}{\partial x} \underline{\hat{x}}+\frac{\partial v}{\partial y} \underline{\hat{y}}\right) \stackrel{\text { C.R.'. }}{\text { cond's }}=\left(\frac{\partial u}{\partial x} \underline{\hat{x}}+\frac{\partial u}{\partial y} \underline{\hat{y}}\right) \cdot\left(-\frac{\partial u}{\partial y} \underline{\hat{x}}+\frac{\partial u}{\partial x} \underline{\hat{y}}\right)=-\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{\partial u}{\partial x}=0$

Constant u and v Contours are Orthogonal (cont.)

Example: $w=z^{2}$

$$
\begin{gathered}
w=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) \\
\text { so }\left\{\begin{array}{l}
u(x, y)=x^{2}-y^{2} \\
v(x, y)=2 x y
\end{array}\right.
\end{gathered}
$$

Also, recall that

$$
\begin{aligned}
& \nabla^{2} u(x, y)=0 \\
& \nabla^{2} v(x, y)=0
\end{aligned}
$$

Mappings of Analytic Functions are Conformal (Angle-Preserving)

- Consider a pair of intersecting paths C_{1}, C_{2} in the z plane mapped onto the $w=u+i v$ plane.

$$
\begin{aligned}
& w=f(z) \\
& f^{\prime}\left(z_{0}\right) \neq 0
\end{aligned}
$$

This assumes that f^{\prime} is not zero.

Hence $\quad \beta=\gamma$

Constant u and v Contours are Orthogonal (Revisited)

Since the contours $u=$ constant and $v=$ constant are (obviously) orthogonal in the w plane, they must remain orthogonal in the z plane.

$$
\text { Assumption : } \frac{d z}{d w} \neq 0
$$

Constant $|w|$ and $\arg (w)$ Contours are also Orthogonal

- If $w=R e^{i \Theta}$ the constant R and Θ contours are (obviously) orthogonal in the w plane.
- If $z=f^{-1}(w)$ is a mapping back to the z plane, the mapping preserves the orthogonality.

$$
\text { Assumption: } \frac{d z}{d w} \neq 0
$$

Note:

The constant Θ (red) and constant R (green) curves are obviously orthogonal in the w plane.

The Logarithm Function

$$
\begin{gathered}
w=\ln (z) \\
z=|z| e^{i \theta}=|z| e^{i\left(\theta_{p}+2 \pi k\right)} \\
\Rightarrow \ln (z)=\ln |z|+i\left(\theta_{p}+2 \pi k\right), \quad k=0, \pm 1, \pm 2, \cdots
\end{gathered}
$$

There are an infinite number of branches (values) for the In function!

Arbitrary Powers of Complex Numbers

$$
w=z^{a} \quad(a \text { may be complex })
$$

Use

$$
\begin{gathered}
z=e^{\ln z}\left(z=|z| e^{i \theta}=|z| e^{i\left(\theta_{p}+2 \pi k\right)}\right) \\
\Rightarrow z^{a}=\left(e^{\ln z}\right)^{a}=e^{a \ln z}=e^{a \ln |z|+a i\left(\theta_{p}+2 \pi k\right)}=e^{a \ln |z|} e^{i a \theta_{p}} e^{i 2 \pi a k}
\end{gathered}
$$

This has an infinite number of branches unless $a k=$ integer for some value of $k=q$, i.e, a is real and rational:

$$
a=\frac{p}{q}(p, q \text { are integers })
$$

(In this case there are q branches.)

Arbitrary Powers of Complex Numbers (cont.)

Example: $f(z)=z^{2 / 3} \quad(a=2 / 3)$

$$
z^{2 / 3}=\left(e^{\frac{2}{3} \ln |z|} e^{i^{\frac{2}{3}} \theta_{p}}\right) e^{i 2 \pi\left(\frac{2}{3} k\right)}
$$

Recall:

$$
\begin{aligned}
& z=|z| e^{i\left(\theta_{p}+2 \pi k\right)} \\
& z^{a}=e^{a \ln |z|} e^{i a \theta_{p}} e^{i 2 \pi a k}
\end{aligned}
$$

$k=0 \quad \frac{2}{3} k=0 \quad \Rightarrow z^{2 / 3}=e^{\frac{2}{3} \ln |z|} e^{i \frac{2}{3} \theta_{p}}$
$k=1 \quad \frac{2}{3} k=\frac{2}{3} \quad \Rightarrow z^{2 / 3}=e^{\frac{2}{3} \ln |z|} e^{i \frac{2}{3} \theta_{p}} e^{i(2 \pi) \frac{2}{3}}$
$k=2 \quad \frac{2}{3} k=\frac{4}{3} \quad \Rightarrow z^{2 / 3}=e^{\frac{2}{3} \ln |z|} e^{i \frac{2}{3} \theta_{p}} e^{i(2 \pi) \frac{4}{3}}$
$k=3 \quad \frac{2}{3} k=2 \quad \Rightarrow z^{2 / 3}=e^{\frac{2}{3} \ln |z|} e^{i \frac{2}{3} \theta_{p}} e^{i(2 \pi) 2}=e^{\frac{2}{3} \ln |z|} e^{i \frac{2}{3} \theta_{p}} \leftarrow \begin{aligned} & \text { starts } \\ & \text { repeating! }\end{aligned}$
$k=4 \quad \frac{2}{3} k=\frac{8}{3}=2+\frac{2}{3} \quad \Rightarrow \quad \cdots \quad$ repeats!
For $z^{p / q}$ the repetition period is $k=q$ (if p and q have no common factors). For irrational powers, the repetition period is infinite; i.e., values never repeat!

