

1

David R. Jackson

Notes 4

Functions of a Complex Variable as Mappings

Notes are adapted from D. R. Wilton, Dept. of ECE

A Function of a Complex Variable as a Mapping

□ A function of a complex variable, w = f(z), is usually viewed as a *mapping* from the complex *z* plane to the complex *w* plane.

For example, $w = z^3$

Simple Mappings: Translations

Translation:

w = A + z

where A is a complex constant.

• The mapping translates every point in the *z* plane by the "vector" *A*.

Simple Mappings: Rotations

Rotation:

$$w = e^{i\alpha}z = e^{i\alpha}\left(re^{i\theta}\right) = re^{i\left(\alpha+\theta\right)}$$

where α is a *real* constant.

• The mapping rotates every point in the *z* plane through an angle α .

Simple Mappings: Dilations

Dilation (stretching):

$$w = az = a\left(re^{i\theta}\right) = (ar)e^{i\theta}$$

where *a* is a *real* constant.

$$u = ax, v = ay$$
$$\Rightarrow \begin{cases} du = a \, dx \\ dv = a \, dy \end{cases}$$

(All distances are uniformly stretched.)

• The mapping magnifies the magnitude |z| of a point z in the complex plane by a factor a.

A General Linear Transformation (Mapping) is a Combination of Translation, Rotation, and Dilation

□ Linear transformation:

$$w = A + Bz = A + |B|e^{i\operatorname{Arg} B} re^{i\theta} = \underbrace{A}_{\text{translation}} + \underbrace{|B|r}_{|B|r}e^{i(\theta + \operatorname{Arg} B)}$$

rotation

where A, B are complex constants.

Shapes do not change under a linear transformation!

Simple Mappings: Inversions

□ Inversion:

$$w = \frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta}$$

The magnitude becomes the reciprocal, and the phase angle becomes the negative.

- Points outside the unit circle get mapped to the inside of the unit circle.
- Points inside the unit circle get mapped to the outside of the unit circle.

Simple Mappings: Inversions

□ Inversion:

Inverson: a straight line maps to a circle

Inversion : circle - preserving property

Inversions have a "circle preserving" property, i.e., circles always map to circles (Straight lines are a special case where the radius of the circle is infinity.)

Circle Property of Inversion Mapping: Proof

1

$$w = \frac{1}{z}$$

(This maps circles into circles.)

$$z = \frac{1}{w} \implies x + iy = \frac{1}{u + iv} \implies x = \frac{u}{u^2 + v^2}, y = \frac{-v}{u^2 + v^2}$$

Consider a circle: $(x - x_0)^2 + (y - y_0)^2 = a^2$

This is in the form
$$x^2 + y^2 + a_1 x + a_2 y + a_3 = 0$$

 $a_1 \equiv -2x_0$
 $a_2 \equiv -2y_0$
 $a_3 \equiv x_0^2 + y_0^2 - a^2$

Hence

$$\left(\frac{u}{u^2 + v^2}\right)^2 + \left(\frac{-v}{u^2 + v^2}\right)^2 + a_1\left(\frac{u}{u^2 + v^2}\right) + a_2\left(\frac{-v}{u^2 + v^2}\right) + a_3 = 0$$

J. W. Brown and R. V. Churchill, *Complex Variables and Applications*, 9th Ed., McGraw-Hill, 2013.

Circle Property of Inversion Mapping: Proof (cont.)

$$\left(\frac{u}{u^2 + v^2}\right)^2 + \left(\frac{-v}{u^2 + v^2}\right)^2 + a_1\left(\frac{u}{u^2 + v^2}\right) + a_2\left(\frac{-v}{u^2 + v^2}\right) + a_3 = 0$$

Multiply by $u^2 + v^2$:

$$\left(\frac{u^2}{u^2 + v^2}\right) + \left(\frac{v^2}{u^2 + v^2}\right) + a_1(u) + a_2(-v) + a_3(u^2 + v^2) = 0$$

or

$$1 + a_1(u) + a_2(-v) + a_3(u^2 + v^2) = 0$$

This is in the form of a circle (see next slide).

Circle Property of Inversion Mapping: Proof (cont.) $1 + a_1(u) + a_2(-v) + a_3(u^2 + v^2) = 0$

Divide by a_3 :

$$(u^{2} + v^{2}) + a'_{1}(u) + a'_{2}(-v) + a'_{0} = 0$$

$$a'_{1} = a_{1} / a_{3}$$

$$a'_{2} \equiv a_{2} / a_{3}$$

$$a'_{0} \equiv 1 / a_{3}$$

a' = a / a

a = a'/2

Complete the square:

$$\left(u+a_{1}'/2\right)^{2}+\left(v-a_{2}'/2\right)^{2}+\left(a_{0}'-\frac{a_{1}'^{2}}{4}-\frac{a_{2}'^{2}}{4}\right)=0$$

This is in the form of a circle:

$$(u - u_0)^2 + (v - v_0)^2 = R^2$$

$$u_0 = -a_1 / 2$$

$$v_0 = +a_2' / 2$$

$$R^2 = \frac{a_1'^2}{4} + \frac{a_2'^2}{4} - a_0'$$

$$R^{2} = \frac{a_{1}^{2}}{4a_{3}^{2}} + \frac{a_{2}^{2}}{4a_{3}^{2}} - \frac{1}{a_{3}} = \frac{x_{0}^{2} + y_{0}^{2}}{\left(x_{0}^{2} + y_{0}^{2} - a^{2}\right)^{2}} - \frac{1}{x_{0}^{2} + y_{0}^{2} - a^{2}} = \frac{x_{0}^{2} + y_{0}^{2} - \left(x_{0}^{2} + y_{0}^{2} - a^{2}\right)}{\left(x_{0}^{2} + y_{0}^{2} - a^{2}\right)^{2}} = \frac{a^{2}}{\left(x_{0}^{2} + y_{0}^{2} - a^{2}\right)^{2}}$$

11

Simple Mappings: Inversions (cont.)

Bilinear (a.k.a. Fractional or Mobius) Transformation

$$w = \frac{A + Bz}{C + Dz}$$
 (A, B, C, D are complex constants)

■ Note that if $D \neq 0$, $w = \frac{A+Bz}{C+Dz} = \frac{A-BC/D+B/D(C+Dz)}{C+Dz} = \frac{A-BC/D}{C+Dz} + B/D$ Steps in $z \Rightarrow w$: $z \Rightarrow C+Dz \Rightarrow \frac{1}{C+Dz} \Rightarrow \frac{A-BC/D}{C+Dz} \Rightarrow \frac{A-BC/D}{C+Dz} + B/D$

- □ This is a sequence of : linear transformation; inversion; dilation and rotation; translation.
- Since each transformation preserves circles, bilinear transformations also have the circle - preserving property : circles in the *z* plane are mapped into circles in the *w* plane (with straight lines thought of as circles of infinite radius).

Bilinear Transformation Example: The Smith Chart

□ Let
$$z = r + jx = \frac{Z(d)}{Z_0}$$
 where $Z(d) = R(d) + jX(d)$ is the impedance at $z = -d$ on a

transmission line of characteristic impedance Z_0 , and $\Gamma(d)$ is the generalized reflection coefficient :

Horizontal and vertical ines (contant reactance and resistance) are mapped into circles.

For an interpretation of Möbius transformations as projections on a sphere, see http://www.youtube.com/watch?v=JX3VmDgiFnY.

- The transformation maps *half* the *z* plane into the *entire w* plane.
- The entire *z*-plane covers the *w*-plane twice.
- The transformation is said to be two to one.

Another Representation of the Squaring Transformation

Constant amplitude and phase contours of $w = f(z) = z^2$

The Square Root Transformation

$$w = f(z) = z^{1/2} = \sqrt{r}e^{i\frac{\theta}{2}} = \sqrt{r}e^{i\frac{\theta_p + 2\pi k}{2}}, \quad k = 0,1$$
 $-\pi < \theta_p \le \pi$

- ✤ We say that there are two "branches" (i.e., values) of the square root function.
- Note that for the principal branch, the square root function is <u>not continuous</u> on the negative real axis. (There is a "branch cut" there.)

• The transformation is said to be one - to - two

The Square Root Transformation (cont.)

$$w = f(z) = z^{1/2} = \sqrt{r}e^{i\frac{\theta}{2}} = \sqrt{r}e^{i\frac{\theta_p + 2\pi k}{2}}, \quad k = 0,1$$
 $-\pi < \theta_p \le \pi$

The Square Root Transformation (cont.)

$$w = f(z) = z^{1/2} = \sqrt{r}e^{i\frac{\theta}{2}} = \sqrt{r}e^{i\frac{\theta_p + 2\pi k}{2}}, \quad k = 0,1$$
 $-\pi < \theta_p \le \pi$

Principal branch, k = 0

Other branch, k = 1

Constant *u* and *v* Contours are Orthogonal

□ Consider contours in the *z* plane on which the real quantities u(x, y) and v(x, y) are constant.

$$w = u(x, y) + iv(x, y) = f(z)$$
 (analytic)

□ The directions normal to these contours are along the gradient direction :

$$\nabla u = \frac{\partial u}{\partial x} \underline{\hat{x}} + \frac{\partial u}{\partial y} \underline{\hat{y}}$$
$$\nabla v = \frac{\partial v}{\partial x} \underline{\hat{x}} + \frac{\partial v}{\partial y} \underline{\hat{y}}$$

□ The gradients, and therefore the contours, are orthogonal (perpendicular) by the C.R. conditions :

$$\nabla u \cdot \nabla v = \left(\frac{\partial u}{\partial x}\hat{x} + \frac{\partial u}{\partial y}\hat{y}\right) \cdot \left(\frac{\partial v}{\partial x}\hat{x} + \frac{\partial v}{\partial y}\hat{y}\right) \stackrel{\text{C.R.}}{=} \left(\frac{\partial u}{\partial x}\hat{x} + \frac{\partial u}{\partial y}\hat{y}\right) \cdot \left(-\frac{\partial u}{\partial y}\hat{x} + \frac{\partial u}{\partial x}\hat{y}\right) = -\frac{\partial u}{\partial y}\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}\frac{\partial u}{\partial x} = 0$$

Constant *u* and *v* Contours are Orthogonal (cont.)

 $w = z^2$ Example: $w = (x + iy)^{2} = (x^{2} - y^{2}) + i(2xy)$ so $\int u(x, y) = x^2 - y^2$ v(x, y) = 2xyAlso, recall that $v = \text{constant}: xy = c_2$ $\nabla^2 u(x, y) = 0$ $\nabla^2 v(x, y) = 0$ $u = \text{constant}: x^2 - y^2 = c_1$ $\boldsymbol{\chi}$

Mappings of Analytic Functions are Conformal (Angle-Preserving)

□ Consider a pair of intersecting paths C_1, C_2 in the *z* plane mapped onto the w = u + iv plane.

This assumes that f' is not zero.

Hence
$$\beta = \gamma$$

Constant *u* and *v* Contours are Orthogonal (Revisited)

Since the contours u = constant and v = constant are (obviously) orthogonal in the *w* plane, they must remain orthogonal in the *z* plane.

Assumption :
$$\frac{dz}{dw} \neq 0$$

Constant |w| and arg(w) Contours are also Orthogonal

- □ If $w = Re^{i\Theta}$ the constant R and Θ contours are (obviously) orthogonal in the w plane.
- If $z = f^{-1}(w)$ is a mapping back to the *z* plane, the mapping preserves the orthogonality.

Assumption :
$$\frac{dz}{dw} \neq 0$$

Note: The constant Θ (red) and constant *R* (green) curves are obviously orthogonal in the *w* plane.

The Logarithm Function

$$w = \ln(z)$$

$$z = |z|e^{i\theta} = |z|e^{i\left(\theta_p + 2\pi k\right)}$$

$$\Rightarrow \ln(z) = \ln|z| + i(\theta_p + 2\pi k), \quad k = 0, \pm 1, \pm 2, \cdots$$

There are an infinite number of branches (values) for the In function!

Arbitrary Powers of Complex Numbers

$$w = z^a$$
 (a may be complex

Use

$$z = e^{\ln z} \qquad \left(z = |z|e^{i\theta} = |z|e^{i\left(\theta_p + 2\pi k\right)} \right)$$

$$\implies z^a = \left(e^{\ln z}\right)^a = e^{a\ln z} = e^{a\ln|z| + ai\left(\theta_p + 2\pi k\right)} = e^{a\ln|z|}e^{ia\theta_p} e^{i2\pi ak}$$

This has an <u>infinite</u> number of branches unless ak = integer for some value of k = q, i.e, a is real and rational:

$$a = \frac{p}{q} (p, q \text{ are integers})$$

(In this case there are q branches.)

Arbitrary Powers of Complex Numbers (cont.)

Example : $f(z) = z^{2/3}$ (<i>a</i> = 2/3) Recall:				
	$z^{2/3} = \left(e^{\frac{2}{3}\ln z }\right)$	$\left e^{i\frac{2}{3}\theta_p} \right) e^{i2\pi \left(\frac{2}{3}k\right)}$		$z = z e^{i(\theta_p + 2\pi k)}$ $z^a = e^{a\ln z } e^{ia\theta_p} e^{i2\pi ak}$
k = 0	$\frac{2}{3}k = 0$	$\Rightarrow z^{2/3} = e^{\frac{2}{3}1}$	$ z e^{i\frac{2}{3}\theta_p}$	
<i>k</i> = 1	$\frac{2}{3}k = \frac{2}{3}$	$\Rightarrow z^{2/3} = e^{\frac{2}{3}l}$	$\frac{\mathbf{n} z }{e} e^{i\frac{2}{3}\theta_p} e^{i(2\pi)\frac{2}{3}}$	
<i>k</i> = 2	$\frac{2}{3}k = \frac{4}{3}$		$\mathbf{n} z e^{i\frac{2}{3}\theta_p} e^{i(2\pi)\frac{4}{3}}$	
<i>k</i> = 3	$\frac{2}{3}k = 2$	$\Rightarrow z^{2/3} = e^{\frac{2}{3}l^3}$	$ z e^{i\frac{2}{3}\theta_p} e^{i(2\pi)^2} = e^{\frac{2}{3}\ln z }$	$e^{i\frac{2}{3}\theta_p} \leftarrow \boxed{\frac{\text{starts}}{\text{repeating!}}}$
<i>k</i> = 4	$\frac{2}{3}k = \frac{8}{3} = 2 + \frac{2}{3}$	\Rightarrow	repeats!	
		•	no common factors).	eriod is $k = q$ (if p and q have For irrational powers, the e; i.e., values never repeat!