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Preliminary

Consider: ( ) 1/ 2f z z= iz r e θ=

( )1/21/2 /2i iz r e r eθ θ= =

1z r= = 0 :θ = 1/2 1z =

2 :θ π= 1/2 1z = −

4 :θ π= 1/2 1z =

There are two possible values.

Choose:
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Branch Cuts and Branch Points (cont.)

1/2 /2iz r e θ=

1/2           

        0     1
           +
        2    -1

z

A
B i
C

θ

π
π

Point

We don’t get back the same result!

3

Consider what happens if we encircle the origin:

x

y

A
B C

r

1r =



Now consider encircling 
the origin twice: 

1/2 /2iz r e θ=

1/2           

        0     1
           
        2    -1
        3    -
        4    1

z

A
B i
C
D i
E

θ

π
π
π
π

+

+

Point

We now get back the same result!

Hence the square-root function is a 
double-valued function.
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Branch Cuts and Branch Points (cont.)

x

y

A
B CD

E

1r =
r

Recall: z p/q has q distinct values
(if p and q have no common factors).



Next, consider encircling a 
point z0 not at the origin.  

1/2 /2iz r e θ=

Unlike encircling the origin, now we return to the same result! 
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Branch Cuts and Branch Points (cont.)

x

y

A

B
θ increasing

θ decreasing

0z



In order to make the square-root function single-valued and 
analytic in the domain, we insert a “barrier” or “branch cut”.

The origin is called a branch point: we are not allowed to encircle it if 
we wish to make the square-root function single-valued.

Here the branch cut is chosen to lie on the negative real axis (an arbitrary choice).
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Branch Cuts and Branch Points (cont.)

x

y

Branch cut
The function z1/2 is analytic 

off of the branch cut.



We must now choose what “branch” of the function we want.

iz r e θ= 1/2 /2iz r e θ=
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Note: MATLAB actually uses -π < θ ≤ π. 
The square-root function is then defined on the negative real axis (though it won’t be analytic there):

Branch Cuts and Branch Points (cont.)

x

y
π θ π− < <

1z =
1/2 1z⇒ =

This is the “principal” branch
(the MATLAB choice*).

Branch cut

( )1/2Re 0z >:Note

1 i− =



Here is the other branch choice.

iz r e θ= 1/2 /2iz r e θ=
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Branch Cuts and Branch Points (cont.)

x

y

3π θ π< <

1z =
1/2 1z⇒ = −

Branch cut



Note that the function is discontinuous across the branch cut.

iz r e θ= 1/2 /2iz r e θ=
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Branch Cuts and Branch Points (cont.)

x

y

π θ π− < <

1z =
1/2 1z⇒ =

1,z θ π→ − →

1,z θ π→ − → −

1/2z i⇒ →

1/2z i⇒ → −

Branch cut
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Branch Cuts and Branch Points (cont.)

x

y

Branch cut

The function z1/2 is analytic off of the branch cut.

1/2w z=

1/21
2

dw z
dz

−=



The shape of the branch cut is arbitrary.

iz r e θ=

1/2 /2iz r e θ=
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Branch Cuts and Branch Points (cont.)

/ 2 3 / 2π θ π− < <

x

y

1z =
1/2 1z =

3 / 2 7 / 2.π θ π< ≤
The second branch is

Branch cut



The branch cut does not have to be a straight line.

iz r e θ=
1/2 /2iz r e θ=

In this case the branch is determined by requiring that the 
square-root function change continuously as we start from a 
specified value (e.g., z = 1).
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Branch Cuts and Branch Points (cont.)

x

y

1z =
1/2 1 ( 0)z θ= ⇒ =

1z = −
1/2z i=

z i=
( )1/2 /4 1 / 2iz e iπ= = +

z i= −

( )1/2 /4 1 / 2iz e iπ−= = −

Branch cut

(This means that the angle θ changes continuously.)

We start by assuming that θ = 0 at z = 1.

Note:
For the second branch, 
we would choose θ = 

2π at z = 1.



Branch points usually appear in pairs; here one is at z = 0 and 
the other at z = ∞ as determined by using ζ = 1/ z and then 
examining the function at ζ = 0.

( )ir e θζ ′′=

Hence the branch cut for the square-root function connects the origin 
and the “point at infinity”.

1/2 1/2 /211/ iw z e
r

θζ ′−= = =
′

We get a different result when we encircle the origin in the ζ plane 
(θ ′ changes by 2π) , which means encircling the “point at infinity” in 
the z plane.
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Branch Cuts and Branch Points (cont.)



Consider this function:

( )1/ 22( ) 1f z z= −

What do the branch points and branch cuts look like for this function?
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Branch Cuts and Branch Points (cont.)



( ) ( ) ( ) ( ) ( )( )1/ 2 1/ 21/ 2 1/ 2 1/ 22( ) 1 1 1 1 1f z z z z z z= − = − + = − − −

x

y

1−

1

There are two branch cuts: we are not allowed to encircle either branch point.

There are now  two branch points.
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Branch Cuts and Branch Points (cont.)



( ) ( )( )1/ 21/ 2 1/ 2 1/ 2
1 2( ) 1 1f z z z w w= − − − =

Geometric interpretation

( ) ( )1 2/2 /2
1 2( ) i if z r e r eθ θ=

1

2

1 1

2 2

1

( 1)

i

i

w z r e

w z r e

θ

θ

= − =

= − − =
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Branch Cuts and Branch Points (cont.)

x

y

1−

1 1θ2θ
1r

2r

z

To make the function 
unique, we agree on what 
the angles θ1 and θ2 are at 

one particular point.

Example:  For z = 2, choose θ1 = θ2 = 0.

( )1/2 1/23 3z = = +



( ) ( ) ( )( )1/ 2 1/ 21/ 22( ) 1 1 1f z z z z= − = − − −

We can rotate both branch cuts to the real axis.

x

y

1−

1
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Branch Cuts and Branch Points (cont.)



( ) ( ) ( )( )1/ 2 1/ 21/ 22( ) 1 1 1f z z z z= − = − − −

x

y

1−

1

Note that the function is the same at the two points shown.

The two branch cuts “cancel”.

1x >

Both θ1 and θ2 have changed by 2π if we encircle both branch points. 

1

2

1 1

2 2

1

( 1)

j

j

w z r e

w z r e

θ

θ

= − =

= − − =
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Branch Cuts and Branch Points (cont.)



( ) ( ) ( )( )1/ 2 1/ 21/ 22( ) 1 1 1f z z z z= − = − − −

An alternative branch cut.

x

y

1−

1

Note:
We are allowed to encircle both branch 

points, but not only one of them!
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Branch Cuts and Branch Points (cont.)



( )1/22( ) 1f z z= −

x

y

1−

1 1234

5 6 7

Suppose we agree that at the point #1, θ1 = θ2 = 0. This should uniquely 
determine the value (branch) of the function everywhere in the complex plane.

Find the angles θ1 and θ2 at the other points labeled.

Example:
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Branch Cuts and Branch Points (cont.)



( ) ( ) ( )( ) ( )( )1 2
1/2 1/21/2 /2 /22

1 2( ) 1 1 1 i if z z z z r e r eθ θ= − = − − − =

1 2

1        0     0
2           0
3           0
4           
5        2
6 2
7 2 2

θ θ

π
π
π π
π π
π π
π π

Pointx

y

1−

1 1234

5 6 7

For example, at point 6:

( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1/21/2

/2 2 /2

( ) 1 1

1 1

1 1 1

1 1

i i

f z z z

z e z e

i z z

i z z

π π

= − − −

= − +

= + − − +

= − − +
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Branch Cuts and Branch Points (cont.)

Part (a): Proceed counterclockwise from point 1.



1 2

1     2     2
2        2
3         2
4          
5        0
6 0
7 0 0

θ θ

π π
π π
π π
π π
π
π

− −
− −
− −
− −
−
−

Pointx

y

1−

1 1234

5 6 7

For example, at point 6:

( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1/21/2

/2 0/2

( ) 1 1

1 1

1 1 1

1 1

i i

f z z z

z e z e

i z z

i z z

π−

= − − −

= − +

= − − + +

= − − +
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Branch Cuts and Branch Points (cont.)

Part (b): Proceed clockwise from point 7.

(Assume that θ1 = θ2 = 0 at point 7)

( ) ( ) ( )( ) ( )( )1 2
1/2 1/21/2 /2 /22

1 2( ) 1 1 1 i if z z z z r e r eθ θ= − = − − − =



Sommerfeld Branch Cuts
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Sommerfeld branch cuts are the most common choice 
in dealing with radiation types of problems, where 

there is a square-root wavenumber function. 

Arnold Sommerfeld (1868-1951)

https://en.wikipedia.org/wiki/File:Sommerfeld1897.gif
https://en.wikipedia.org/wiki/File:Sommerfeld,Arnold_1935_Stuttgart.jpg


( )1/22( ) 1f z z= −

Sommerfeld Branch Cuts (cont.)

x

y

1−

1

First branch: Re ( ) 0f z ≥
Second branch: Re ( ) 0f z ≤

The first branch is defined by:

( )1/22 21 1, 1x x x− = − >

( ), 2 3f = +E.g.

Sommerfeld branch cuts
20 1xy x= <and
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First branch: 2( ) 1f z z= −

Second branch: 2( ) 1f z z= − −

We can also say:

With this choice of branch cuts we have:



Sommerfeld Branch Cuts (cont.)
Proof:

Re ( ) 0f z =Set

( )
( )( )
( ) ( )

2

2

2

2 2

2 2 2

( ) imaginary
( ) real < 0 

1 real < 0

1 real < 0

1 2 real < 0

0 1 1 ( 0)

f z
f z

z

x iy

x y i xy

xy x y x y

⇒ =

⇒ =

⇒ − =

⇒ + − =

⇒ − − + =

⇒ = − < ⇒ < =fon ra d

As long as we do not cross this hyperbolic contour, the real part of f does not change. 
Hence, the entire complex plane must have a real part that is either positive or negative 
(depending on which branch we are choosing) if the branch cuts are chosen to lie along 
this contour (i.e., the Sommerfeld branch cuts).

First branch: Re ( ) 0f z ≥
Second branch: Re ( ) 0f z ≤
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( ) ( ) ( )( )1/2 1/21/22( ) 1 1 1f z z z z= − = − − −

We first solve for the “boundary curve” where Re(f (z)) = 0.



( )1/22( ) 1f z z= −

x

y

1−

1

Re ( ) 0f z >

Re ( ) 0f z <

If the branch cuts are deformed to the boundary curve, the gray area disappears.

Re ( ) 0f z >

Re ( ) 0f z >

Re ( ) 0f z >
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Sommerfeld Branch Cuts (cont.)

First branch

Boundary curve



( )1/22( ) 1f z z= −

Another point of view:
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Sommerfeld Branch Cuts (cont.)

2 1w z= −Let 1/2( )f z w=

( )( ) Re ( ) 0f z w f z= ≥ The branch point is on the negative real axis.Principal branch:

( )1/21 1z w w= + = ± +

Mapping from w plane to z plane

x

y

1−

1

z plane

u

v

w plane

1−

Branch cuts map



( )1/22 2
0x zk k k= −

Application: electromagnetic (and other) problems involving a wavenumber.

( )1/22 2
0x zk j k k= − −

The first branch is chosen in order to 
have decaying waves when kz > k0.

( )Re zk

( )Im zk

k−

k

Im 0xk < Im 0xk <

Im 0xk <Im 0xk <

(The – sign in front is an arbitrary choice here.)

The entire complex plane (using 
the first branch) now corresponds 
to decaying waves (Im (kx) < 0).

or

x xk j k= −
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Sommerfeld Branch Cuts (cont.)

Note: j is used here instead of i. 



Riemann Surface

A Riemann surface is a surface that combines the 
different  sheets of a multi-valued function.

It is useful since it displays all possible values of 
the function at one time.

Georg Friedrich Bernhard Riemann (1826-1866)

(his signature)
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http://en.wikipedia.org/wiki/File:Bernhard_Riemann_signature.png


Riemann Surface (cont.)

The concept of the Riemann surface is first illustrated for

( ) 1/ 2f z z=

The function z1/2 is analytic everywhere on this surface 
(there are no branch cuts), except at the origin. It also 

assumes all possible values on the surface. 

1/ 2

1/ 2

(1 1)
3 (1 1)

π θ π

π θ π

− < < =

< < = −

Top sheet:

Bottom sheet:

Consider this choice:

iz r e θ=

The Riemann surface is really two complex planes connected together.
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Riemann Surface (cont.)

Side view

D

B

B

D
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The angle θ changes smoothly on the surface!
x

y

BD

Top

Bottom

B
D

x

y

Top view

The width of the escalator is 
collapsed to zero here.

“Escalator”
(where branch cut used to be) 



Riemann Surface (cont.)

Bottom sheet

Top sheet

“Escalator”
(where branch 
cut used to be) 

Branch point 

Note: 
We are not allowed to jump from 

one escalator to the other! 
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3D View

This figure shows going around a branch point twice.



Riemann Surface (cont.)

Connection between sheets
(escalator)

1/2           

        0     1
           
        2    -1
        3    -
        4    1

z

A
B i
C
D i
E

θ

π
π
π
π

+

+

Point

( ) 1/2 /2 /2( 1) i if z z e eθ θ= = =

iz re θ=

x

y

A
B CD

EBD

r = 1
r
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Top View

This figure shows going around a branch point twice.

Note: 4π is the same as 0 for this function.



Riemann Surface (cont.)

34

( ) 1/ 2f z z=

x

y

C

The square root function is analytic on 
and inside this path, and the closed line 
integral around the path is thus zero.

x

y

C

The square root function is discontinuous
on this path, and the closed line integral 
around the path is not zero.



Riemann Surface (cont.)

The 3D perspective makes it more clear that the integral around this closed path 
on the Riemann surface is zero. (The path can be shrunk continuously to zero.)
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( ) 1/ 2f z z=

C



Riemann Surface (cont.)

( ) ( )1/22 1f z z= −
Top sheet: 
Defined by  θ1 = θ2 = 0 on real axis for x > 1

( ) ( )( )1/21/2( ) 1 1f z z z= − − −
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y

x
1−

1

There are two sets of up and down “escalators” that now connect 
the top and bottom sheets of the surface.



Riemann Surface (cont.)

( ) ( )1/22 1f z z= −

The angle θ1 has changed by 2π as we go back to the point z = 2.
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Bottom sheet

y

x
1−

1

( ) 3f z = +

( ) 3f z = −

2z =

Top sheet

( )
( ) ( )( )
( )( )1 2

1/22

1/21/2

/2 /2
1 2

( ) 1

1 1
i i

f z z

z z

r e r eθ θ

= −

= − − −

=



Riemann Surface (cont.)

( ) ( )1/22 1f z z= −

C1 , C2 are 
closed curves.   

C1 , C2 are closed curves on the Riemann surface.   

The integral around them is not zero!
(The paths cannot be shrunk to zero.)
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y

x
1−

1

Escalators

Escalators

C1

C2



( )1/22( ) 1f z z= −

x

y

1−

1

  Re ( ) 0
 Re ( ) 0

f z
f z

>
<

Top sheet :

Bottom sheet :

Riemann Surface (cont.)

Sommerfeld (hyperbolic) shape of escalators
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Riemann Surface (cont.)

40

Application to leaky modes:

Note: j is used here instead of i. 

( ), xz jk xjk zx z Ae eψ −−= Leaky modes (radiating modes) are improper
(exponentially increasing away from the structure).

, 0, 0zk jβ α β α= − > >

( )1/22 2 2 2 2 2
0 0x y z x zk k k k k k k+ + = ⇒ = −In the air region:

( ) ( )2 2 2
0x xj j kβ α β α− + − =

Imaginary part: x xβ α βα= −

0xβ > 0xα <Conclusion:Assume:

z

x

(forward wave)

(assume ky = 0)

Leaky mode radiating in air

zk = complex propagation wavenumber of mode

(improper!)



Riemann Surface (cont.)

Choose Sommerfeld (hyperbolic) shape of escalators.

( ) ( )1/2 1/22 2 2 2
0 0x z zk k k j k k= − = − −

41

x x xk jβ α= − = propagation wavenumber of modevertical 

( )Re zk

( )Im zk

0k−

0k

  Im 0
 Im 0

x

x

k
k
<

>

Top sheet :

Bottom sheet :Top sheet: surface-wave wavenumber
Bottom sheet: leaky-wave wavenumber

Leaky waves have a field that 
increases vertically (αx < 0).

SW

LW

( ), x zjk x jk zx z Ae eψ − −=



Other Multiple-Branch Functions

( ) 1/3 1/3 /3if z z r e θ= = 3 sheets

( ) ( ) ( )ln( ) ln lnif z z r e r iθ θ= = = + Infinite number of sheets

( ) ( ) ( )lnln ln lnr iz z r if z z e e e e e
π π θπ π π πθ+

= = = = =

Infinite number of sheets

The power π is an irrational number.

( ) 4/5 4/5 4 /5if z z r e θ= = 5 sheets

( ) / / /p q p q ip qf z z r e θ= = q sheets
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Other Multiple-Branch Functions (cont.)

43

x

y

Infinite # of sheets

Riemann surface for ln(z)

Note: There are no escalator pairs here: as we keep going in one direction 
(clockwise or counterclockwise), we never return to the original sheet.

x

y


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

