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Analytic Continuation of Functions
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We use analytic continuation to extend a function off of the real axis 
and into the complex plane such that the resulting function is analytic.

More generally, analytic continuation extends the representation of a 
function in one region of the complex plane into another region, 
where the original representation may not have been valid.

For example, consider the Bessel function Jn (x). 

 How do we define Jn (z) so that it is computable in some region 
and agrees with Jn (x) when z is real? 



Analytic Continuation of Functions (cont.)
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 One approach to extend the domain of a function is to use Taylor series.

 We start with a Taylor series that is valid in some region.

 We extend this to a Taylor series that is valid in another region.

Note: 
This may not be the easiest way in practice, but it always works in 

theory, and it illustrates the principle of analytic continuation.
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two alternative 
representations

But we'll pretend that we don't know the closed - form expression

• Expand about .  Since both series are 
valid there, find coefficients of a 
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use the above series
representation

new series :

by using 
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 The coefficients of the new series --- with extended region of convergence --- are determined 
     from the coefficients of the original series, even though that series did not converge in the 
 extended region. The information to extend the convergence region  is contained in 

the coefficients  of the original series --- even if it was divergent in the new region!

Analytic Continuation of Functions (cont.)

4

Example
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Analytic Continuation of Functions (cont.)

Another way to get the Taylor series expansion:
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Example (cont.)
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( )2 3 4

1 1 2 2 3; ; ;
1 1 1 1

f z f z f z f z
z z z z

⋅′ ′′ ′′′= = = =
− − − −

Note :

(This assumes that we know the closed-form expression!)



 If the singularities are isolated, we can continue any function
    into the entire complex plane via a sequence of continuations 
    using Taylor and / or Laurent series !

Analytic Continuation of Functions (cont.)
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Example (cont.)
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Here we show the continuation
of from its power series
representation in the region

into the entire complex
plane using Taylor series.

We have a “leapfrogging” of the circles.



Theorem 
The Zeros of an Analytic Function are Isolated
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Assume that  is analytic in a connected region  , and suppose simple zero). 
Then  has a Taylor series with at . 

More generally

Proof of theorem:
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, we may have a zero with  such that  has 
a Taylor series as :

and is analy

multiplicity

0

0
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tic in
(it is represented by a converging Taylor series).

Since is analytic it is also continuous. Since  , 
 That is, the zer

cannot vanish within a 
sufficiently small neighborhood of ( )f zos of must be .isolated

(The zeros cannot be arbitrarily close together.)

The only exception to having isolated zeros is if the function f (z) is 
identically zero in a neighborhood of z0 (N = ∞).
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The Zeros of an Analytic Function are Isolated

( ) 1( ) sin 1 , 1,2,f z z z n
nπ

= = = The function    has zeros at

y

8

This function cannot be analytic at z = 0 since the zeros accumulate there and 
hence are not isolated there.

x
1 / π

The origin is an “accumulation point” for the zeros.

Example



Analytic Continuation Principle

Theorem of analytic continuation:

Assume that f (z) and g (z) are analytic in a connected region A, and f (zn) = g(zn) 
on a set of points zn in A that converge to a point z0 in A.  

Note: 
If f and g agree on a contour 
inside A or in a region that is 
inside of A, this will make the 

functions agree everywhere in A.

In other words, there can be only one function 
that is analytic in A and has a defined set of 

values at the converging points zn.

Az0

g(z)zn

Then  g(z) = f (z) in A.

9
Note: These points or contour can be on the real axis as a special case (e.g., a line segment).



Analytic Continuation Principle

Proof of theorem

Proof: 
 Construct the difference function F(z) = f (z)-g(z), which in analytic in A. This 

function must have a Taylor series at z0. 

 This Taylor series for F(z) has all zero coefficients and thus is zero in its 
region of convergence about z0; otherwise, the function must have isolated 
zeros – which it does not, by assumption. 

 By continuing (“leapfrogging”) the Taylor series that has zero coefficients 
(analytic continuation), the difference function must be zero throughout A. 

Az0

g(z)zn
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Corollary (extending a domain from A to A ∪ B) 
Assume that f (z) is analytic in A and g(z) is analytic in B, and the two 
domains overlap in a region A ∩ B, and f (z) = g (z) in A ∩ B.

Define ( ) ( )
( )

f z , z A
h z

g z , z B
∈=  ∈

Then h(z) is the only analytic function in A ∪ B that equals f (z) on A.  

Analytic Continuation Principle (cont.)
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The function h(z) uniquely 
extends the domain of f (z) 

from A to A ∪ B. 

( ) ( )f z g z=

B
A

A B∩

A B∪

( )f z
( )g z



Corollary: h(z) is the only analytic function in A ∪ B that equals f (z) on A.  

Proof of corollary:
 The function h is analytic in the region A ∪ B and also equals f (zn) on any set of 

converging points in the intersection region. 

 The theorem of analytic continuation thus ensures that h is unique in A ∪ B. 

Analytic Continuation Principle (cont.)
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B
A

A B∩

A B∪

( )f z
( )g z

Converging points



Two common ways to use analytic continuation. 

Analytic Continuation Principle (cont.)
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Line segment

1) Continue off of the real axis.

2) Continue from one region (blue) to 
another larger region (blue + red) 
with a region of overlap (purple).

Blue: 1st and 2nd quadrants
Red: 2nd and 3rd quadrants
Overlap 2nd quadrant
Larger region: 1st, 2nd, 3rd quadrants

Example:x

y



Example (continuation from real axis)

The function sin (x) is continued off the real axis. 

The function g(z) is the only one that is analytic in the blue region of the 
complex plane and agrees with sin (x) on any segment of the real axis.

Analytic Continuation Principle (cont.)
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( ) ( )sin
2
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−−
= =
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Line segment
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y



The Bessel function Jn(x) is continued off the real axis. 

The function g(z) is the only one that is analytic in the blue region of the 
complex plane and agrees with Jn (x) on any segment of the real axis.

Analytic Continuation Principle (cont.)
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Example (continuation from real axis)
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Example (continuation to a larger region)
The function Ln (z) (principal branch) is continued beyond a branch cut. 

( ) ( ) ( )Ln lnf z z r i ,θ π θ π≡ = + − < <

Analytic Continuation Principle (cont.)
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iz re θ=

x
Branch cut for f

y

( ) ( ) ( )ln ln
2 3 2

g z z r i
/ /

θ
π θ π
≡ = +

− < <

Region of overlap
(second quadrant)

Branch cut for g

Note: “Ln” denotes the principal branch.

Define:



Example (cont.)

Analytic Continuation Principle (cont.)

The function h(z) is the only function that is analytic in the first 
three quadrants and agrees with Ln(z) in the second quadrant.
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( ) ( )Ln 2h z z iπ= +

( ) ( )Lnh z z=( ) ( )Lnh z z=



The function Yn (z) (Bessel function of the second kind) is continued beyond a 
branch cut. 
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Example (continuation to a larger region)

Analytic Continuation Principle (cont.)

( ) ( )Ln lnz r iθ
π θ π
= +

− < <
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0.577216γ 
(Euler’s constant)

x
Branch cut

y
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Example (cont.)

Note: In the third quadrant, this new Bessel 
function will not be the same as the usual 
Bessel function there.

( ) ( )ln ln
2 3 2

z r i
/ /

θ
π θ π

= +

− < <

Analytic Continuation Principle (cont.)
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The new Bessel function using ln(z) with the new angle range is analytic within the red region. 

New Bessel function Yn
new:

x

y

( )( )

new ( ) ( )
2 2

n n

n

Y z Y z

J z iπ
π

=

+

In the third quadrant :

new ( ) ( )n nY z Y z=

In the secondquadrant :



Example (cont.)
Analytic Continuation Principle (cont.)
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The extended function h(z) is analytic within the first three quadrants. 

x

y

( ) ( )( )2( ) 2n nh z Y z J z iπ
π

= +

( ) ( )nh z Y z=( ) ( )nh z Y z=



Example

Analytic Continuation Principle (cont.)
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( ) ( )0
0

0xtF x e J t dt, x
∞

−≡ ≥∫

x

y

Original domain:  x ≥ 0

How do we extend F(x) to arbitrary z?

( )0 2
0

1 0
1

xte J t dt , x
x

∞
− = ≥

+
∫

Identity :

Note: The integral does not converge for x < 0.



Example (cont.)

Analytic Continuation Principle (cont.)
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( )
( )1 22

1

1
/F z

z
≡

+

This is defined everywhere in the complex plane (except on the branch cuts).

x

y

i

i−

( )1 22 21 1
/

z x+ = +

Note: 
The shape of the branch cuts 

is arbitrary here.

Here we define:



Example (cont.)

Analytic Continuation Principle (cont.)
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( )
2

1

1
F z

z
≡

+

This corresponds to using vertical branch cuts.

We next use: 2: Re 1 0z + ≥Note

x

y

i

i−

( )1 22 21 1
/

z x+ = +

With these branch cuts, 

( )1 22Re 1 0
/

z + ≥

The derivation (omitted) is similar to 
that of the Sommerfeld branch cuts.

( )1 22 21 1
/

z z⇒ + = +

(with these branch cuts)



Example (cont.)

Analytic Continuation Principle (cont.)
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( )
( )1 22

1

1
/F z

z
≡

+

x

y

i

i−

( )1 22 21 1
/

z x+ = +Top sheet :

Escalators

Analytic continuation onto Riemann surface: 



Example
Analytic Continuation Principle (cont.)
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( ) ( ) ( ) ( ) ( )ln ln 1 Ln Ln 1F x x x= − = −

How do we extend F(x) to arbitrary z?

( )
1

1x

F x dt
t

≡ ∫

( ) ( )Ln  argz zπ π− < <meansNote :

(real valued for real x > 0)

( ) ( )LnF x x=

( )Re t×
1 x

( )Im t

Original domain: x > 0

( ) ( ) ( )ln = Ln 2z z i nπ+Recall :



Example (cont.)

Analytic Continuation Principle (cont.)
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x

y

Branch cut

( ) ( )LnF z z≡

Analytic continuation: 

(This agrees with F(x) on the real axis.)



Example (cont.)

Analytic Continuation Principle (cont.)
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We analytically continue F(z) from the real axis. 

We require that the path is varied continuously as z leaves the real axis.

×
1

z C

z

z

z

z ( )Re t

( )Im t

( )
1

1z

F z dt
t

≡ ∫
From another point of view:



Example (cont.)

Analytic Continuation Principle (cont.)
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As z encircles the pole at the origin, we get a different result for the function F(z).

( ) ( )1 1 12 2
C C C

dz i dz dz F z F z i
z z z

π π
+ −

+ −= = ⇒ − = − =∫ ∫ ∫

( )
1

1z

F z dt
t

≡ ∫

×
1z

C+

z

z

z

z

( )F z+

( )F z− C−

( )Re t

( )Im t

This is why we need a branch cut in the z plane, with a branch point at z = 0.



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )lnF z z≡

Analytic continuation onto Riemann surface: 

(The function is defined so that F(z) agrees with F(x) on the real axis.)

x

y

Escalators

( ) ( ) ( )Ln 0F x x θ= =

(sheet number zero)

There are an infinite number of sheets!



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )lnF z z≡

x

y

Escalators



Example
Analytic Continuation Principle (cont.)
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How do we interpret cosh-1(z) for arbitrary z?

( ) ( )1 2cosh Ln 1 1x x x , x− = + − >

x
1 x

y

Original domain: x > 1

( )2Ln 1  1x x x+ − >Note : is real (and positive) for

( ) ( )Ln  argz zπ π− < <meansRecall :

( )1cosh 1 0− =Note :



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )1 2cosh Ln 1z z z− ≡ + −

x
1

z

y

x

( ) ( )1 2cosh Ln 1x x x− = + −

Analytic continuation: 



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )1 2cosh Ln 1z z z− ≡ + −

x

y

1−

1

( ) ( ) ( )1 22 21 Re 0  1
/

f z z f z z z≡ − ⇒ > ⇒ −for all Sommerfeld branch cuts for 

( )Re 0w >Recall :

F(z) is analytic in any one quadrant.

Sommerfeld branch cuts

Where would the branch cuts be?

( ) 2 1f z z= −

(see note below)

Note:



Example (cont.)
Analytic Continuation Principle (cont.)
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( ) ( )1 2cosh Ln 1z z z− ≡ + −

( )2 1 11
2

w z z z w
w

 = + − ⇒ = + 
 

derivation omitted

The branch cut for the Ln(w) function corresponds to w being a negative real 
number, i.e, -∞ < w < 0). 

Examine argument of Ln function:

Do we need another branch cut 
due to the Ln function?

( ) ( )0 1w , z ,∈ −∞ ⇒ ∈ − −∞Note :

x

y

1−

1
Branch cut due to Ln function

1w = −



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )1 2cosh Ln 1z z z− ≡ + −

F(z) is an analytic continuation of cosh-1(x) off of the real axis.

F(z) is analytic in any one quadrant.

x

y

1−

1

Final Picture



Example (cont.)

Analytic Continuation Principle (cont.)
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( ) ( )1 21 2cosh ln 1
/

z z z−  ≡ + − 
 

x

y

1−

1

( ) ( )1 2cosh Ln 1x x x− ≡ + −

Escalators

There are an infinite number of sheets!

Analytic continuation onto Riemann surface: 



Assume a radiating phased line source on the z axis. 

EM Example

(2)0
0 ( )

4
zjk z

z
IA H k e
j ρ

µ ρ − 
=  
 

The magnetic vector potential is (ECE 6341): 
( )1/22 2

0

2 2
0 0

2 2
0 0

,

,

z

z z

z z

k k k

k k k k

j k k k k

ρ = −

 − <= 
− − >

Note:  j is used here instead of i.

37

0( ) zjk zI z I e−=
kz is real

x

y

z



EM Example (cont.)

We can also write (from ECE 6340):

0
(2)0 0

0 0 0 ( )
4 4

z z

jk R
jk z jk z

z
IeA I e dz H k e

R j ρ
µµ ρ

π

∞ −
′− −

−∞

   ′= =   
  

∫

Note: The integral converges for real kz.

Hence

0

0 0 4
z

jk R
jk z

z
eA I e dz

R
µ

π

∞ −
′−

−∞

 
′=  

 
∫

Exists only for real kz Exists for complex kz

The second form is the analytic continuation of the first form off of the real axis.
38

0( ) zjk zI z I e−=R

( )0,0, z′

( ), ,x y z

x

y

z



EM Example (cont.)

(2)0 0
0 ( )

4
zjk z

z
IA H k e
j ρ

µ ρ − 
=  
 

( )
( )

1/22 2
0

1/22 2
0

z

z

k k k

j k k

ρ = −

= − −

In order for this to be the analytic continuation off of the real axis of the 
integral form, we must chose the branch of the square root function correctly 

so that it changes smoothly and it is correct when kz = real > k0. 

( )1/22 2
0 0 z zk j k k k kρ = − − = = >negative imaginary number for real

39

0( ) zjk zI z I e−=
kz is complex

y

x

z



EM Example (cont.)

( )1/22 2
0zk j k kρ = − −

( )Re zk

( )Im zk

0k−

0k

Im 0kρ < Im 0kρ <

Im 0kρ <Im 0kρ <

2 2
0zk j k kρ = − −

The Sommerfeld branch cuts are a convenient choice.

40
(but not necessary)

Every point in the kz plane is 
now a radially decaying wave.



EM Example (cont.)

2 2
0zk j k kρ = − −

( )Re zk

( )Im zk

0k−

0k

Im 0kρ < Im 0kρ <

Im 0kρ <Im 0kρ <

The use of the radical sign is equivalent to having Sommerfeld branch cuts.

41



EM Example (cont.)

2 2
0zk j k kρ = − −

(Top sheet)

( )Re zk

( )Im zk

0k−

0k

Riemann surface

We can now let kz wander anywhere we wish on the Riemann surface, and we know how to 
calculate the square root. (We analytically continue to the entire Riemann surface.)

42

Note: 
The function is continuous 
on the Riemann surface.

( )1/22 2
0zk j k kρ = − −



EM Example (cont.)

( )1/22 2
0zk j k kρ = − −

At the indicated final point, the imaginary part of kρ is chosen to be positive. 

2 2
0zk j k kρ = − −

(Top sheet)

( )Re zk

( )Im zk

0k−

0k

Riemann surface

(Bottom sheet)

Im 0kρ <

Im 0kρ >

Example

43

What is kρ at the final 
indicated point?

Final point

( )2 2
0zk j k kρ = + −



EM Example (cont.)

( )1/22 2
0zk j k kρ = − −

Example

44

What type of wave is at 
the indicated points?

( )Re zk

( )Im zk

0k−

0k

Riemann surface

( )k jρ = − +"Surface wave" :

( )
( )1 2, 0

kρ

θ π θ
= +

= =
"Phased array" :

( ) ( )k jρ = + + +"Leaky wave" :

( ) ( )( )1/21/2
0 0z zk j k k k kρ = − − − −Note :

Note: 
The leaky wave field is the analytic continuation of 
the phased array field when kz becomes complex.



Assume that f  (z) is the analytic continuation of a real function f  (x) 
off the real axis (or a segment of the real axis).

Then within the analytic region, we have ( ) ( ) **f z f z=   

Examples:

( ) ( )sin , ,z
nz e J z

( ) ( )ln , Re 0z z >

Schwarz Reflection Principle

(assuming branch cut on negative real axis)

f (z) is assumed analytic in this region.

45

(proof omitted)

( )f z

( )f xLine segment:

y

x
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