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Singularity

A point zs is a singularity of the function f (z) if the function is 
not analytic at zs.

(The function does not necessarily have to be infinite there.)

 Recall from Liouville’s theorem that the only function that is analytic 
and bounded everywhere in the complex plane is a constant.  

 Hence, all non-constant functions that are analytic everywhere in the 
complex plane must be unbounded at infinity and hence have a 
singularity at infinity.
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Taylor Series

If f (z) is analytic in the region
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The radius of convergence Rc is the distance to the closest singularity.
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The series diverges for |z-z0| > Rc (proof omitted).



Laurent Series

If f (z) is analytic in the region 0a z z b< − <

then 
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The series diverges outside the annulus (proof omitted). 

The series converges inside the annulus.



Taylor Series Example
Example:
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From the property of Taylor series we have:

The point z = 1 is a singularity 
(a first-order pole).
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Example:
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Expand about  z0 = 1:

The series converges for 1 1z − <

The series diverges for 1 1z − >

Taylor Series Example

π θ π− < <

6

( ) ( )21 11 1 1
2 8

z z z= + − − − +

1 x

y



Example:
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Expand about z0 = 1:

The series converges for 0 1 1z< − <

The series diverges for 1 1z − >

Laurent Series Example

Using the previous example, we have:

π θ π− < <

(The coefficients are shifted by 1 from the previous example.) 
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Isolated Singularity
Isolated singularity:

The function is singular at zs but is analytic for 0 sz z δ< − <

Examples: 1/sin 1 1, , , 0
sin
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z z z
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A Laurent series expansion about zs is always possible! 

8

 0,a a b δ> < <This is a special case of a Laurent series with .

(for some δ)



Non-Isolated Singularity

Non-Isolated Singularity:
By definition, this is a singularity that is not isolated.

Example:

( ) 1
1sin
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Simple poles at:

1z
mπ
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Note: A Laurent series expansion about z = 0 with a = 0 is not possible!

(Distance between successive 
poles decreases with m !)
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Note: The function is not analytic in any region 0 < |z| < δ. 

( )0sz = singularitynon - isolated
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Branch Point:

This is a type of non-isolated singularity.

Example:

( ) 1/ 2f z z=

Non-Isolated Singularity (cont.)
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Note: The function is not analytic in any region 0 < |z| < δ. 

Note: A Laurent series expansion in any neighborhood of z = 0 is not possible!

0sz =
Not analytic at the 
branch point.
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Examples of Singularities
Examples: 
(These will be discussed in more detail later.)

( )
1

p
sz z−

pole of order p at z = zs ( if p = 1, pole is a simple pole)

1/ ze essential singularity at z = 0 (pole of infinite order) 

1/ 2z non-isolated singularity z = 0 (branch point)

( )sin z
z

removable singularity at z = 0 

1
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z

 
 
 

non-isolated singularity z = 0 (for a = 0)
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N

If expanded about 
the singularity, we 
can have: 
T = Taylor
L = Laurent
N = Neither
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Classification of Isolated Singularities

Isolated singularities

Removable singularities Poles of finite order
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Essential singularities
(poles of infinite order)
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These are each discussed in more detail next.
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Isolated Singularity: Removable Singularity

The limit z → z0 exists and f (z) is made analytic by defining 

Example:
( )sin z
z
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L'Hospital's 
Rule

Removable singularity:

Laurent series → Taylor series
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Pole of finite order (order P):

( ) ( )
P

n
n s

n
f z a z z

∞

=−

= −∑
sz

δ

The Laurent series expanded about the singularity terminates
with a finite number of negative exponent terms.
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Isolated Singularity: Pole of Finite Order

simple pole at z = 0

pole of order 3 at z = 3
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Isolated Singularity: Essential Singularity

Essential Singularity
(pole of infinite order):
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The Laurent series expanded about the singularity has an 
infinite number of negative exponent terms.
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Graphical Classification of 
an Isolated Singularity at  zs
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Isolated
 

singularities
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Laurent series:

Essential singularity



Picard’s Theorem
The behavior near an essential singularity is pretty wild !

Picard’s theorem:
In any neighborhood of an essential singularity, the 
function will assume every complex number (with 

possibly a single exception) an infinite number of times.
sz

δ

( ) 1/zf z e=

For example: 

No matter how small δ is, this function will assume all 
possible complex values (except possibly one).

(Please see the next slide.)
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Picard’s Theorem (cont.)
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The “exception” here is w0 = 0  (R0 = 0). 
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Take the ln of both 
sides, equate real and 

imaginary parts.

Any value of n
gives a valid 

solution.
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Picard’s Theorem (cont.)

0, / 2
n n

r θ π
→∞ →∞

= → = → −

Example (cont.)

This sketch shows that as n increases, the points where the function exp(1/z)
equals the given value w0 converge to the (essential) singularity at the origin.

You can always find a solution for z now matter how small δ (the “neighborhood”) is!
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Note:

A similar plot exists for negative n.



Picard’s Theorem (cont.)

Example (cont.)
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( ) 1/zf z e=

Plot of the function exp(1/z), centered on the essential singularity at z = 0. The color represents the 
phase, the brightness represents the magnitude. This plot shows how approaching the essential 
singularity from different directions yields different behaviors (as opposed to a pole, which, approached 
from any direction, would be uniformly white).

https://en.wikipedia.org/wiki/Essential_singularity

cos sin1/ ir rze e e
θ θ−=

iz re θ=



Picard’s Theorem (cont.)
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Compare with the behavior near a simple pole:
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Singularity at Infinity

Example:

( ) 3f z z=

( ) ( ) 3

1f z g w
w

= = pole of order 3 at w = 0

The function f (z) has a pole of order 3 at infinity.

Note: 
When we say “finite plane” we mean everywhere except at infinity.

The function  f (z) in the example above is analytic in the finite plane.

We classify the types of singularities at infinity by letting w = 1/z

and analyzing the resulting function at w = 0. 
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Other Definitions

Meromorphic: The function is analytic everywhere in the finite plane 
except for isolated poles of finite order.

( )
( )( )3

sin 1, ( )
sin1 1

zf z g z
zz z

= =
− +

Examples:

Entire: The function is analytic everywhere in the finite plane.

Examples:
( ) 2, sin , 2 3 1zf z e z z z= + +

Meromorphic functions can always be expressed as the 
ratio of two entire functions, with the zeros of the 
denominator function as the poles (proof omitted). 
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