

Fall 2023 David R. Jackson

1

Notes 9 Singularities

Notes are from D. R. Wilton, Dept. of ECE

Singularity

A point z_s is a singularity of the function f(z) if the function is not analytic at z_s .

(The function does <u>not</u> necessarily have to be infinite there.)

- Recall from Liouville's theorem that the only function that is analytic and bounded <u>everywhere</u> in the complex plane is a constant.
- Hence, all non-constant functions that are analytic everywhere in the complex plane must be unbounded at infinity and hence have a singularity at infinity.

Example:
$$f(z) = e^{z}$$
 (tends to infinity as $z = x \rightarrow \infty$)

Taylor Series

The <u>radius of convergence</u> R_c is the distance to the <u>closest</u> singularity.

If f(z) is analytic in the region

$$\left|z-z_{0}\right| < R_{c}$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 for $|z - z_0| < R_c$

$$a_{n} = \frac{f^{(n)}(z_{0})}{n!} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{(z-z_{0})^{n+1}} dz$$

The series <u>converges</u> for $|z-z_0| < R_c$.

The series <u>diverges</u> for $|z-z_0| > R_c$ (proof omitted).

Laurent Series

If f(z) is analytic in the region $a < |z - z_0| < b$

then

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n \quad \text{for} \quad a < |z - z_0| < b$$

$$a_{n} = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{\left(z - z_{0}\right)^{n+1}} dz$$

The series <u>converges</u> inside the annulus.

The series diverges outside the annulus (proof omitted).

Taylor Series Example

From the property of Taylor series we have:

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}, \quad |z| < 1$$
$$\sum_{n=0}^{\infty} z^n \quad \text{diverges }, \quad |z| > 1$$

Taylor Series Example

etc.

The series diverges for |z-1| > 1

Laurent Series Example

Using the previous example, we have:

 $a_{-1} = 1$ (The coefficients are shifted by 1 from the previous example.) $a_{0} = \frac{1}{2}$ $\frac{\sqrt{z}}{z-1} = \frac{1}{z-1} + \frac{1}{2} - \frac{1}{8}(z-1) + \dots$ $a_{1} = -\frac{1}{8}$ The series converges for 0 < |z-1| < 1etc. The series diverges for |z-1| > 1

Isolated Singularity

Isolated singularity:

The function is singular at z_s but is analytic for $0 < |z - z_s| < \delta$

(for some δ)

A Laurent series expansion about z_s is always possible!

This is a special case of a Laurent series with a > 0, $a < b < \delta$.

Non-Isolated Singularity

Non-Isolated Singularity:

By definition, this is a singularity that is not isolated.

Note: The function is not analytic in <u>any</u> region $0 < |z| < \delta$.

Note: A Laurent series expansion about z = 0 with a = 0 is <u>not possible</u>!

Non-Isolated Singularity (cont.)

Branch Point:

This is a type of non-isolated singularity.

Note: The function is not analytic in any region $0 < |z| < \delta$.

Note: A Laurent series expansion in any neighborhood of z = 0 is <u>not possible</u>!

Examples of Singularities

Examples:

Т

L

Ν

(These will be discussed in more detail later.)

removable singularity at z = 0(isolated singularity) If expanded about the singularity, we can have:

T = Taylor L = Laurent N = Neither

pole of order p at $z = z_s$ (if p = 1, pole is a *simple pole*) (isolated singularity)

 $\sin(z)$

Z

 $\overline{\left(z-z_{s}\right)^{p}}$

essential singularity at z = 0 (pole of infinite order) (isolated singularity)

$$\frac{1}{\sin\left(\frac{1}{z}\right)}$$

 $z^{1/2}$

<u>non-isolated</u> singularity z = 0 (for a = 0)

<u>non-isolated</u> singularity z = 0 (branch point)

Classification of Isolated Singularities

These are each discussed in more detail next.

Isolated Singularity: Removable Singularity

Removable singularity:

The limit $z \rightarrow z_0$ exists and f(z) is made analytic by defining

Laurent series \rightarrow Taylor series

Isolated Singularity: Pole of Finite Order

 δ

 Z_{s}

•

Pole of <u>finite</u> order (order *P*):

$$f(z) = \sum_{n=-P}^{\infty} a_n (z - z_s)^n$$

The Laurent series <u>expanded about the singularity</u> terminates with a finite number of negative exponent terms.

Examples:

$$f(z) = \frac{1}{z}, \quad (P = 1) \quad \text{simple pole at } z = 0$$

$$f(z) = \frac{3}{(z-3)^3} + \frac{2}{(z-3)^2} + \frac{1}{(z-3)} + 1 + (z-3) + \cdots, \quad (P=3)$$

pole of order 3 at $z=3$

Isolated Singularity: Essential Singularity

Essential Singularity (pole of <u>infinite</u> order):

$$f(z) = \sum_{n=-\infty}^{\infty} a_n \left(z - z_s\right)^n$$

The Laurent series expanded about the singularity has an infinite number of negative exponent terms.

Examples:

$$f(z) = \sin\left(\frac{1}{z}\right) = \sum_{\substack{n=1\\odd}}^{\infty} \frac{1}{n!} (-1)^{n+1} \left(\frac{1}{z}\right)^n = \frac{1}{z} - \frac{1}{6z^3} + \frac{1}{120z^5} + \dots$$

$$f(z) = e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \dots$$

Graphical Classification of an Isolated Singularity at z_s

Laurent series:

Picard's Theorem

The behavior near an essential singularity is pretty wild !

Picard's theorem:

In <u>any</u> neighborhood of an essential singularity, the function will assume <u>every</u> complex number (with possibly a single exception) an infinite number of times.

For example:

$$f(z) = e^{1/z}$$

No matter how small δ is, this function will assume all possible complex values (except possibly one).

(Please see the next slide.)

Charles **Emile** Picard

Example:
$$f(z) = e^{1/z}$$
 $f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n$

Set

 $e^{1/z} = w_0 = R_0 e^{i\Theta_0}$ (a given arbitrary complex number)

$$z = re^{i\theta} \implies e^{1/z} = e^{\frac{e^{-i\theta}}{r}} = e^{\frac{1}{r}(\cos\theta - i\sin\theta)} = w_0 = R_0 e^{i(\Theta_0 + 2\pi n)} \begin{bmatrix} \text{Take the ln of both} \\ \text{sides, equate real and} \\ \text{imaginary parts.} \end{bmatrix}$$
$$\implies \cos\theta = r \ln R_0, \quad \sin\theta = -r(\Theta_0 + 2n\pi)$$
$$\implies \cos^2\theta + \sin^2\theta = 1 = r^2 \left[\ln^2 R_0 + (\Theta_0 + 2n\pi)^2\right] \begin{bmatrix} \text{Any value of } n \\ \text{gives a valid} \\ \text{solution.} \end{bmatrix}$$

Hence

$$r = \frac{1}{\sqrt{\ln^2 R_0 + (\Theta_0 + 2n\pi)^2}} \xrightarrow{n \to \infty} 0, \qquad \theta = \tan^{-1} \left(\frac{-(\Theta_0 + 2n\pi)}{\ln R_0} \right) \xrightarrow{n \to \infty} -\pi/2$$

The "exception" here is $w_0 = 0$ ($R_0 = 0$).

 δ

 Z_{s}

This sketch shows that as *n* increases, the points where the function exp(1/z) equals the given value w_0 converge to the (essential) singularity at the origin.

You can always find a solution for z now matter how small δ (the "neighborhood") is!

Plot of the function $\exp(1/z)$, centered on the essential singularity at z = 0. The color represents the phase, the brightness represents the magnitude. This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).

https://en.wikipedia.org/wiki/Essential_singularity

Compare with the behavior near a simple pole:

$$f(z) = \frac{1}{z} \qquad \qquad \frac{1}{z} = \frac{1}{r}e^{-i\theta}$$

Singularity at Infinity

We classify the types of singularities at <u>infinity</u> by letting w = 1/zand analyzing the resulting function at w = 0.

Example:

$$f(z) = z^{3}$$
$$f(z) = g(w) = \frac{1}{w^{3}} \text{ pole of order 3 at } w = 0$$

The function f(z) has a pole of order 3 at infinity.

Note:

When we say "finite plane" we mean everywhere except at infinity. The function f(z) in the example above is analytic in the finite plane.

Other Definitions

Entire: The function is analytic everywhere in the <u>finite</u> plane.

Examples: $f(z) = e^{z}, \sin z, 2z^{2} + 3z + 1$

Meromorphic: The function is analytic everywhere in the finite plane except for isolated poles of finite order.

Examples:
$$f(z) = \frac{\sin z}{(z-1)(z+1)^3}, \quad g(z) = \frac{1}{\sin z}$$

Meromorphic functions can always be expressed as the <u>ratio</u> of two entire functions, with the zeros of the denominator function as the poles (proof omitted).