ECE 6382

Fall 2023

David R. Jackson

Notes 9
 Singularities

Notes are from D. R. Wilton, Dept. of ECE

Singularity

A point z_{s} is a singularity of the function $f(z)$ if the function is not analytic at z_{s}.
(The function does not necessarily have to be infinite there.)

- Recall from Liouville's theorem that the only function that is analytic and bounded everywhere in the complex plane is a constant.
- Hence, all non-constant functions that are analytic everywhere in the complex plane must be unbounded at infinity and hence have a singularity at infinity.

Example: $f(z)=e^{z}$ (tends to infinity as $z=x \rightarrow \infty$)

Taylor Series

The radius of convergence R_{c} is the distance to the closest singularity.

If $f(z)$ is analytic in the region

$$
\left|z-z_{0}\right|<R_{c}
$$

then

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \text { for }\left|z-z_{0}\right|<R_{c} \\
a_{n} & =\frac{f^{(n)}\left(z_{0}\right)}{n!}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
\end{aligned}
$$

$$
\text { The series converges for }\left|z-z_{0}\right|<R_{c^{\prime}}
$$

The series diverges for $\left|z-z_{0}\right|>R_{c}$ (proof omitted).

Laurent Series

If $f(z)$ is analytic in the region $a<\left|z-z_{0}\right|<b$
then

$$
\begin{gathered}
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { for } \quad a<\left|z-z_{0}\right|<b \\
a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
\end{gathered}
$$

The series converges inside the annulus.

The series diverges outside the annulus (proof omitted).

Taylor Series Example

Example:

$$
\begin{gathered}
f(z)=\frac{1}{z-1} \\
f(z)=\frac{-1}{1-z}=-\left[1+z+z^{2}+z^{3}+\ldots\right] \\
=-\sum_{n=0}^{\infty} z^{n}
\end{gathered}
$$

The point $z=1$ is a singularity
(a first-order pole).
From the property of Taylor series we have:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}, \quad|z|<1 \\
& \sum_{n=0}^{\infty} z^{n} \quad \text { diverges }, \quad|z|>1
\end{aligned}
$$

Taylor Series Example

Example:

$$
f(z)=\sqrt{z}
$$

Expand about $z_{0}=1: \quad f(z)=\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$

$$
R_{c}=1
$$

$$
-\pi<\theta<\pi
$$

$$
a_{0}=\left.z^{1 / 2}\right|_{z=1}=1
$$

$a_{0}=\left.z^{1 / 2}\right|_{z=1}=1$

$$
a_{1}=\left.\frac{1}{1!}\left(\frac{1}{2} z^{-1 / 2}\right)\right|_{z=1}=\frac{1}{2}
$$

$a_{2}=\left.\frac{1}{2!}\left(\frac{1}{2}\left(-\frac{1}{2}\right) z^{-3 / 2}\right)\right|_{z=1}=-\frac{1}{8}$
etc.

$$
\sqrt{z}=1+\frac{1}{2}(z-1)-\frac{1}{8}(z-1)^{2}+\ldots
$$

Laurent Series Example

Example:

$$
f(z)=\frac{\sqrt{z}}{z-1} \quad-\pi<\theta<\pi
$$

Expand about $z_{0}=1: f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-1)^{n}$

Using the previous example, we have:
$a_{0}=\frac{1}{2}$
$a_{1}=-\frac{1}{8}$
etc.
$a_{-1}=1 \quad$ (The coefficients are shifted by 1 from the previous example.)

$$
\frac{\sqrt{z}}{z-1}=\frac{1}{z-1}+\frac{1}{2}-\frac{1}{8}(z-1)+\ldots
$$

The series converges for $0<|z-1|<1$
The series diverges for $|z-1|>1$

Isolated Singularity

Isolated singularity:

The function is singular at z_{s} but is analytic for $0<\left|z-z_{s}\right|<\delta$
(for some δ)

$$
\text { Examples: } \quad \frac{\sin z}{z}, \frac{1}{z}, e^{1 / z}, \frac{1}{\sin z} \text { at } z=0
$$

A Laurent series expansion about z_{s} is always possible!
This is a special case of a Laurent series with $a>0, a<b<\delta$.

Non-Isolated Singularity

Non-Isolated Singularity:

By definition, this is a singularity that is not isolated.

Example:

$$
f(z)=\frac{1}{\sin \left(\frac{1}{z}\right)}
$$

Simple poles at:

$$
z=\frac{1}{m \pi} \quad \begin{aligned}
& \text { (Distance between successive } \\
& \text { poles decreases with } m!\text {) }
\end{aligned}
$$

Note: The function is not analytic in any region $0<|z|<\delta$.
Note: A Laurent series expansion about $z=0$ with $a=0$ is not possible!

Non-Isolated Singularity (cont.)

Branch Point:

This is a type of non-isolated singularity.

Example:

$$
f(z)=z^{1 / 2}
$$

Note: The function is not analytic in any region $0<|z|<\delta$.
Note: A Laurent series expansion in any neighborhood of $z=0$ is not possible!

Examples of Singularities

Examples:

(These will be discussed in more detail later.)
$\begin{array}{ll}\mathrm{T} & \frac{\sin (z)}{z} \\ \mathrm{~L} & \frac{1}{\left(z-z_{s}\right)^{p}}\end{array}$
removable singularity at $z=0$
(isolated singularity)

If expanded about the singularity, we can have:
T = Taylor
L = Laurent $\mathrm{N}=$ Neither
essential singularity at $z=0$ (pole of infinite order) (isolated singularity)
$\mathrm{N} \quad \frac{1}{\sin \left(\frac{1}{z}\right)}$
non-isolated singularity $z=0($ for $a=0)$

N
$z^{1 / 2}$
non-isolated singularity $z=0$ (branch point)

Classification of Isolated Singularities

Isolated singularities

Removable singularities

$$
\begin{aligned}
\frac{\sin (z)}{z}, \frac{1-\cos (z)}{z^{2}} \quad & \frac{1}{z}, \frac{1}{z^{2}}, \frac{1}{(z-1)^{m}} \\
& \frac{2 z+3}{(z-1)^{2}(z+2)}
\end{aligned}
$$

Essential singularities (poles of infinite order)

$$
\sin \left(\frac{1}{z}\right), \quad e^{1 / z}
$$

These are each discussed in more detail next.

Isolated Singularity: Removable Singularity

Removable singularity:
The limit $z \rightarrow z_{0}$ exists and $f(z)$ is made analytic by defining

Example:

$$
f\left(z_{0}\right) \equiv \lim _{z \rightarrow z_{0}} f(z)
$$

$$
\frac{\sin (z)}{z}
$$

$$
\lim _{z \rightarrow 0} \frac{\sin (z)}{z} \stackrel{\substack{\text { L'Hospital's } \\ \text { Rule }}}{=} \lim _{z \rightarrow 0} \frac{\cos (z)}{1}=1
$$

$$
\frac{\sin (z)}{z}=\frac{z-\frac{1}{3} z^{3}+\frac{1}{5} z^{5}-\ldots}{z}=1-\frac{1}{3} z^{2}+\frac{1}{5} z^{4}-\ldots
$$

Isolated Singularity: Pole of Finite Order

Pole of finite order (order P):

$$
f(z)=\sum_{n=-P}^{\infty} a_{n}\left(z-z_{s}\right)^{n}
$$

z_{s}

The Laurent series expanded about the singularity terminates with a finite number of negative exponent terms.

$$
\begin{aligned}
& \text { Examples: } \\
& \qquad f(z)=\frac{1}{z},(P=1) \quad \text { simple pole at } z=0 \\
& f(z)=\frac{3}{(z-3)^{3}}+\frac{2}{(z-3)^{2}}+\frac{1}{(z-3)}+1+(z-3)+\cdots, \quad(P=3) \\
& \text { pole of order } 3 \text { at } z=3
\end{aligned}
$$

Isolated Singularity: Essential Singularity

Essential Singularity (pole of infinite order):

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{s}\right)^{n}
$$

$$
z_{s}
$$

The Laurent series expanded about the singularity has an infinite number of negative exponent terms.

Examples:

$$
\begin{gathered}
f(z)=\sin \left(\frac{1}{z}\right)=\sum_{\substack{n=1 \\
\text { odd }}}^{\infty} \frac{1}{n!}(-1)^{n+1}\left(\frac{1}{z}\right)^{n}=\frac{1}{z}-\frac{1}{6 z^{3}}+\frac{1}{120 z^{5}}+\ldots \\
f(z)=e^{1 / z}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{z}\right)^{n}=1+\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{6 z^{3}}+\ldots
\end{gathered}
$$

Graphical Classification of an Isolated Singularity at z_{s}

Laurent series:

$f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{s}\right)^{n}=\cdots+a_{-p}\left(z-z_{s}\right)^{-p}+\cdots+a_{-1}\left(z-z_{s}\right)^{-1}+a_{0}+a_{1}\left(z-z_{s}\right)+a_{2}\left(z-z_{s}\right)^{2} \cdots$

Analytic or

Picard's Theorem

The behavior near an essential singularity is pretty wild!

Picard's theorem:

In any neighborhood of an essential singularity, the function will assume every complex number (with possibly a single exception) an infinite number of times.

For example:

$$
f(z)=e^{1 / z}
$$

No matter how small δ is, this function will assume all possible complex values (except possibly one).
(Please see the next slide.)

Charles Ėmile Picard

Picard's Theorem (cont.)

Example: $f(z)=e^{1 / z}$

$$
f(z)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\frac{1}{z}\right)^{n}
$$

Set

$$
\begin{aligned}
& e^{1 / z}=w_{0}=R_{0} e^{i \Theta_{0}} \quad(\text { a given arbitrary complex number }) \\
& z=r e^{i \theta} \Rightarrow e^{1 / z}=e^{\frac{e^{-i \theta} r}{r}}=e^{\frac{1}{r}(\cos \theta-i \sin \theta)}=w_{0}=R_{0} e^{i\left(\Theta_{0}+2 \pi n\right)} \begin{array}{c}
\begin{array}{c}
\text { Take the ln of both } \\
\text { sides, equate real and } \\
\text { imaginary parts. }
\end{array}
\end{array}
\end{aligned}
$$

$$
\Rightarrow \cos \theta=r \ln R_{0}, \quad \sin \theta=-r\left(\Theta_{0}+2 n \pi\right)
$$

Hence

$$
\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta=1=r^{2}\left[\ln ^{2} R_{0}+\left(\Theta_{0}+2 n \pi\right)^{2}\right]
$$

> Any value of n gives a valid solution.

$$
r=\frac{1}{\sqrt{\ln ^{2} R_{0}+\left(\Theta_{0}+2 n \pi\right)^{2}}} \stackrel{n \rightarrow \infty}{\rightarrow} 0, \quad \theta=\tan ^{-1}\left(\frac{-\left(\Theta_{0}+2 n \pi\right)}{\ln R_{0}}\right) \stackrel{n \rightarrow \infty}{\rightarrow}-\pi / 2
$$

The "exception" here is $w_{0}=0\left(R_{0}=0\right)$.

Picard's Theorem (cont.)

Example (cont.)

This sketch shows that as n increases, the points where the function $\exp (1 / z)$ equals the given value w_{0} converge to the (essential) singularity at the origin.

You can always find a solution for z now matter how small δ (the "neighborhood") is!

Example (cont.)

$$
\begin{gathered}
f(z)=e^{1 / z} \\
z=r e^{i \theta} \\
e^{1 / z}=e^{\frac{\cos \theta}{r}} e^{-i \frac{\sin \theta}{r}}
\end{gathered}
$$

Plot of the function $\exp (1 / z)$, centered on the essential singularity at $z=0$. The color represents the phase, the brightness represents the magnitude. This plot shows how approaching the essential singularity from different directions yields different behaviors (as opposed to a pole, which, approached from any direction, would be uniformly white).
https://en.wikipedia.org/wiki/Essential_singularity

Picard's Theorem (cont.)

Compare with the behavior near a simple pole:

$$
f(z)=\frac{1}{z} \quad \frac{1}{z}=\frac{1}{r} e^{-i \theta}
$$

Singularity at Infinity

We classify the types of singularities at infinity by letting $w=1 / z$ and analyzing the resulting function at $w=0$.

Example:

$$
\begin{aligned}
& f(z)=z^{3} \\
& f(z)=g(w)=\frac{1}{w^{3}} \quad \text { pole of order } 3 \text { at } w=0
\end{aligned}
$$

The function $f(z)$ has a pole of order 3 at infinity.

Other Definitions

Entire: The function is analytic everywhere in the finite plane.

Examples:

$$
f(z)=e^{z}, \sin z, \quad 2 z^{2}+3 z+1
$$

Meromorphic: The function is analytic everywhere in the finite plane except for isolated poles of finite order.

Examples: $\quad f(z)=\frac{\sin z}{(z-1)(z+1)^{3}}, \quad g(z)=\frac{1}{\sin z}$
Meromorphic functions can always be expressed as the ratio of two entire functions, with the zeros of the denominator function as the poles (proof omitted).

