NAME: \qquad

ELEE 6382

Fall 2006

MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book and open-notes. You may use your class notes, and a calculator. Please show all steps of your work and write neatly in order to receive credit.

Please write all of your work on the sheets attached.

Problem 1 (25 pts)

Find the analytic function $w(x, y)=u(x, y)+i v(x, y)$ whose real part is

$$
u(x, y)=x^{3}-3 x y^{2} .
$$

Problem 2 (25 pts)

For

$$
f(z)=\frac{1}{(z+1)(z+2)}
$$

find all the following: in the specified regions: (Hint: Some part of each subproblem below may be used in the next or succeeding subproblems!)
a) A Laurent series representation of $f(z)$ about the origin valid for $|z|<1$.
b) A Laurent series representation of $f(z)$ about the origin valid for $1<|z|<2$
c) A Laurent series representation of $f(z)$ about the origin valid for $|z|>2$.
d) The value of the integral $\oint_{C} f(z) d z$ where C is a circle of radius $r=\frac{1}{2}$ with center at $z=0$.
e) The same as d) but with $r=\frac{3}{2}$.
f) The same as d) but with $r=e^{\alpha}, \alpha>1$

Problem 3 (25 pts)

Calculate the value of each of the following definite integrals:
a) $\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}, \quad a>1$.
b) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+2\right)}$

Problem 4 (25 pts)

Recall that when mathematicians say that proposition A is true if and only if proposition B is true, it means that not only does 1) A imply B but also 1) B implies A. (Sometimes "if and only if" is abbreviated "iff".) Alternatively, they say that for proposition A to be true it is necessary and sufficient that proposition B be true. Note that the implication must be proved both ways to use the terms "if and only if" or "necessary and sufficient".

Prove that two functions $f_{1}(x), f_{2}(x)$ are linearly dependent if and only if their Wronskian vanishes. This requires that you prove both statements below:
a) Prove that if $f_{1}(x), f_{2}(x)$ are linearly dependent (i.e., if $f_{1}(x)=C f_{2}(x)$ for some C), then their Wronskian vanishes.
b) Prove that if the Wronskian $W\left[f_{1}, f_{2}\right]$ vanishes, then $f_{1}(x), f_{2}(x)$ are linearly dependent. (Hint: consider writing $W\left[f_{1}, f_{2}\right]=0$ in the form of a logarithmic derivative, $\frac{d}{d x} \ln f(x)$.)

ROOM FOR EXTRA WORK

