NAME: \qquad

ELEE 6382

Fall 2008
Oct. 23, 2008

MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book and open-notes. You may use your class notes, and a calculator. Please show all steps of your work and write neatly in order to receive full credit.

Please write all of your work on the sheets attached.

Problem 1 (40 pts)

Consider the function

$$
f(z)=\frac{1}{z^{2}\left(z^{2}+4\right)}
$$

a.) Determine the locations and classify by kind (simple pole, pole of order ?, branch point, essential singularity, etc.) all the singularities of $f(z)$ in the finite plane.
b.) Determine the residue of the function at each singularity in part a.).
c.) Determine all Laurent series about the point $z=0$ (write out at least the first three non-vanishing terms) and specify their regions of convergence.
d.) Determine the value of the contour integral $\oint_{C} f(z) d z$ for the contour $C:|z|=5$. Sketch the contour.
e.) Repeat d.) for the contour C : $|z+2 i|=1$. Sketch the contour.

Problem 2 (20 pts)

The imaginary part of an analytic function $f(z)=u(x, y)+i v(x, y)$ is

$$
v(x, y)=x^{2}-y^{2}+2 x y-3 x-2 y
$$

a) Find $u(x, y)$ and hence determine $f(z)$ to within an unknown (real) constant.
b) Determine the constant from the condition $f(0+i 0)=1$.

Problem 3 (40 pts)
Calculate the value of each of the following three definite integrals:
a) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)}$
b) $\int_{0}^{2 \pi} \frac{2 d \theta}{5-4 \cos \theta}$.
c) $\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x$; use the result to evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.

ROOM FOR EXTRA WORK

