\qquad

ELEE 6382

Fall 2009
Oct. 22, 2009 MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book (Arfken and Weber) and open-notes. You may also use your class notes, and a calculator. Please show all steps of your work and write neatly in order to receive full credit.

Please write all of your work on the sheets attached.

Problem1 (25 pts)

The imaginary part of an analytic function $f(z)=u(x, y)+i v(x, y)$ is

$$
v(x, y)=6 x y+e^{x} \sin y
$$

a) Find $u(x, y)$ and hence determine $f(z)$ to within an unknown (real) constant.
b) Determine the constant from the condition $f(0+i 0)=0$ and check that your solution satisfies the Cauchy-Riemann conditions.

Problem 2 (25 pts)

Obtain the Laurent or Taylor series, as appropriate, of the function $f(z)=\frac{1}{(z-1)(z-2)}$ in the regions given.
a) $|z|<1$
b) $1<|z|<2$

Problem 3 (25 pts)

Calculate the value of each of the following two definite integrals:
a) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}-1\right)\left(x^{2}+4\right)}$
b) $\int_{0}^{\infty} \frac{x \sin a x}{1+x^{2}} d x, a>0$ (Hint: Both x and $\sin a x$ are odd functions of x.)

Problem 4 (25 pts)

Consider the function

$$
f(z)=\frac{z^{\frac{1}{2}}}{\left(z^{2}+4\right)}
$$

a.) Determine the locations and classify by kind (pole with order, branch point, essential singularities, etc.) all the singularities of $f(z)$ in the finite plane. Using the axes given below, sketch the locations in the z-plane of the singularities. For any branch points present, define a top sheet by specifying a range of θ in the polar representation of $z=r e^{i \theta}$. Show the resulting cut on your sketch.

Singularities:

Range of θ, top sheet:

b.) Determine the top sheet residues of the function of part a.).
c.) Determine the value of the contour integral $\oint_{C} f(z) d z$ for the contour $|z-2 i|=1$.

Draw the contour on your sketch in part a). ($f(z)$ is the same function considered in parts a) and b).)

ROOM FOR EXTRA WORK

