NAME:

\qquad

ELEE 6382

Fall 2010
Oct. 28, 2010

MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book (Arfken and Weber or approved substitute) and open-notes. You may also use your class notes, and a calculator. Please show all steps of your work and write neatly and legibly in order to receive full credit.

Please write all of your work on the attached sheets. If a problem is continued onto the workspace pages at the end, please indicate this.

Useful identities :

$$
\begin{aligned}
& \sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2} \\
& \cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} \\
& \sinh \left(z_{1} \pm z_{2}\right)=\sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2} \\
& \cosh \left(z_{1} \pm z_{2}\right)=\cosh z_{1} \cosh z_{2} \pm \sinh z_{1} \sinh z_{2} \\
& \sin i z=i \sinh z, \quad \cos i z=\cosh z \\
& \sinh i z=i \sin z, \quad \cosh i z=\cos z \\
& \cosh ^{2} z-\sinh ^{2} z=1 \\
& \frac{d}{d z} \sinh z=\cosh z, \frac{d}{d z} \cosh z=\sinh z,
\end{aligned}
$$

Problem 1 (25 pts)

Verify that the Cauchy-Riemann conditions are satisfied for the function $w(z)=\sin 4 z$.

Problem 2 (25 pts)

Obtain the Laurent or Taylor series, as appropriate, of the function $f(z)=\frac{1}{(z-1)(z+1)}$ in the regions specified below:
a. $0<|z-1|<2$. Sketch the locations of any singularities as well as the region of convergence in the z-plane.
b. $|z-1|>2$
c. Evaluate the closed contour integral $\oint_{C} f(z) d z$, with $f(z)$ as defined above, about the following contours. Assume C has a counter-clockwise orientation.
a) $C:|z-1|=1$. Sketch the contour.
b) $C:|z-1|=3$. Sketch the contour.

Problem 3 (25 pts)

Calculate the value of the following three definite integrals. Sketch any contours used, including their orientation, closures, and singularity locations, if any, for each case.
a) $\int_{-\infty}^{\infty} \frac{e^{i m x} d x}{\left(x^{2}+1\right)}$, two cases: $m>0, m<0$

$$
m>0
$$

$$
m<0
$$

b) $\int_{-\infty}^{\infty} \frac{e^{i m x} d x}{\left(x^{2}-1\right)}$, two cases: $m>0, m<0$. $m>0$

$$
m<0
$$

c) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}\left(x^{2}+4\right)}$

Problem 4 (25 pts)

Consider the function

$$
f(z)=\frac{z^{\frac{3}{2}}}{(z+1)^{2}}
$$

Give the locations and classify by kind, i.e., pole (with order and residue), branch point, essential singularity, etc., all the singularities of $f(z)$ in the finite complex plane. Sketch the locations in the z-plane of the singularities. For any branch points present, define a branch cut by assuming $0<\theta<2 \pi$ in the polar representation of $z=r e^{i \theta}$. Show the resulting cut on your sketch.

Essential singularities:

Location(s):

Branch point singularities

Location(s):

Branch definition: $0<\theta<2 \pi$

Pole singularities

Location(s):
Order:

Residues:

ROOM FOR EXTRA WORK

ROOM FOR EXTRA WORK

