ELEE 6382 Fall 2011 Oct. 27, 2011

MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book (Arfken and Weber or approved substitute) and open-notes. You may also use your class notes, and a calculator. Please show all steps of your work and write neatly and legibly in order to receive full credit.

Please write all of your work on the attached sheets. If a problem is continued onto the workspace pages at the end, please indicate this.

Useful identities and integrals :

	$\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2$			$\int x \sin x dx = \sin x - x \cos x$		
	$\cos(z_1 \pm z_2) = \cos z$	$n z_2$	$\int x \cos x dx = \cos x + x \sin x$			
	$\sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \cosh z_1 \sinh z_2$ $\cosh(z_1 \pm z_2) = \cosh z_1 \cosh z_2 \pm \sinh z_1 \sinh z_2$			$\int x e^x dx$	$= xe^{x} - e^{x}$	
	$\sin iz = i \sinh z,$	$\cos iz = \cosh z$				
	$\sinh iz = i \sin z$,	$\cosh iz = \cos z$				
,	$\cosh^2 z - \sinh^2 z = 1$					
	$\frac{d}{dz}\sinh z = \cosh z, \ \frac{d}{dz}\cosh z = \sinh z,$					
Problem 1 (25)			Problem 3 (2	.5)		
Problem 2 (25)			Problem 4 (2	.5)		

Total (100) _____

Problem 1 (25 pts)

The vectors $\mathbf{a} = (\alpha_1, \alpha_2, \alpha_3)$, $\mathbf{b} = (\beta_1, \beta_2, \beta_2)$ are in C³ with inner product defined as $\langle \mathbf{a}, \mathbf{b} \rangle = (\alpha_1 \beta_1^* + \alpha_2 \beta_2^* + \alpha_3 \beta_3^*)$

where the asterisk (*) denotes complex conjugate. Construct a vector **b**' that is 1) a linear combination of **b** and **a** and 2) is orthogonal to **a**. That is, let $\mathbf{b}' = \mathbf{b} - c\mathbf{a}$ and find constant *c* such that $\langle \mathbf{b}', \mathbf{a} \rangle = 0$. (You may want to refer to the Gram-Schmidt process.)

a. Using inner product notation, derive an expression for c.

b. If $\mathbf{a} = (1, i, 2)$, $\mathbf{b} = (1, i, 0)$, determine \mathbf{b}' and check that $\langle \mathbf{b}', \mathbf{a} \rangle = 0$

Problem 2 (25 pts)

A function w(z) = u(x, y) + iv(x, y) of the complex variable z = x + iy has imaginary part $v(x, y) = (y \cos y + x \sin y)e^x$. Find u(x, y) if w(0+i0) = 0+i0.

Problem 3 (25 pts)

Calculate the value of the following **two** definite integrals. Sketch any contours used, including their orientation, closures, and singularity locations, if any, for each case.

a)
$$\int_{-\infty}^{\infty} \frac{x \sin mx}{\left(x^2 + 1\right)} dx = \operatorname{Im} \int_{-\infty}^{\infty} \frac{x e^{imx}}{\left(x^2 + 1\right)} dx \quad ; \text{ two cases: } m > 0, m < 0$$
$$\boxed{m > 0}$$

b)
$$\int_{0}^{\infty} \frac{dx}{\left(x^2+1\right)^2 \left(x^2-1\right)}$$

Problem 4 (25 pts)

For each of the following functions, give the indicated information for each singularity in the complex plane:

- i. Location of singularity
- ii. Singularity type, e.g., pole (give order and residue), removable singularity, branch point, essential singularity, etc.
- iii. Residue for any poles or essential singularities

a)
$$(z-1)^2 e^{\frac{1}{z-1}}$$

b)
$$\frac{\sin^2(z-1)}{(z-1)^2}$$

c)
$$\frac{z^{\frac{2}{3}}}{(z+1)}$$

d) $\cot \pi z$

ROOM FOR EXTRA WORK

ROOM FOR EXTRA WORK