NAME:

\qquad

ELEE 6382
 Fall 2011
 Oct. 27, 2011
 MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book (Arfken and Weber or approved substitute) and open-notes. You may also use your class notes, and a calculator. Please show all steps of your work and write neatly and legibly in order to receive full credit.

Please write all of your work on the attached sheets. If a problem is continued onto the workspace pages at the end, please indicate this.

Useful identities and integrals :

$$
\begin{array}{ll}
\sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2} & \int x \sin x d x=\sin x-x \cos x \\
\cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} & \int x \cos x d x=\cos x+x \sin x \\
\sinh \left(z_{1} \pm z_{2}\right)=\sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2} & \int x e^{x} d x=x e^{x}-e^{x} \\
\cosh \left(z_{1} \pm z_{2}\right)=\cosh z_{1} \cosh z_{2} \pm \sinh z_{1} \sinh z_{2} & \\
\sin i z=i \sinh z, \quad \cos i z=\cosh z & \\
\sinh i z=i \sin z, \quad \cosh i z=\cos z & \\
\cosh ^{2} z-\sinh ^{2} z=1 \\
\frac{d}{d z} \sinh z=\cosh z, \frac{d}{d z} \cosh z=\sinh z, &
\end{array}
$$

Problem 1 (25) \qquad Problem 3 (25) \qquad
Problem 2 (25) \qquad Problem 4 (25) \qquad
Total (100) \qquad

Problem 1 (25 pts)

The vectors $\mathbf{a}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \mathbf{b}=\left(\beta_{1}, \beta_{2}, \beta_{2}\right)$ are in C^{3} with inner product defined as

$$
<\mathbf{a}, \mathbf{b}>=\left(\alpha_{1} \beta_{1}^{*}+\alpha_{2} \beta_{2}^{*}+\alpha_{3} \beta_{3}^{*}\right)
$$

where the asterisk (${ }^{*}$) denotes complex conjugate. Construct a vector \mathbf{b}^{\prime} that is 1) a linear combination of \mathbf{b} and \mathbf{a} and 2) is orthogonal to \mathbf{a}. That is, let $\mathbf{b}^{\prime}=\mathbf{b}-c \mathbf{a}$ and find constant c such that $\left\langle\mathbf{b}^{\prime}, \mathbf{a}\right\rangle=0$. (You may want to refer to the Gram-Schmidt process.)
a. Using inner product notation, derive an expression for c.
b. If $\mathbf{a}=(1, i, 2), \mathbf{b}=(1, i, 0)$, determine \mathbf{b}^{\prime} and check that $\left\langle\mathbf{b}^{\prime}, \mathbf{a}\right\rangle=0$

Problem 2 (25 pts)
A function $w(z)=u(x, y)+i v(x, y)$ of the complex variable $z=x+i y$ has imaginary part $v(x, y)=(y \cos y+x \sin y) e^{x}$. Find $u(x, y)$ if $w(0+i 0)=0+i 0$.

Problem 3 (25 pts)

Calculate the value of the following two definite integrals. Sketch any contours used, including their orientation, closures, and singularity locations, if any, for each case.
a) $\int_{-\infty}^{\infty} \frac{x \sin m x}{\left(x^{2}+1\right)} d x=\operatorname{Im} \int_{-\infty}^{\infty} \frac{x e^{i m x}}{\left(x^{2}+1\right)} d x$; two cases: $m>0, m<0$
$m>0$

$$
m<0
$$

b) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}\left(x^{2}-1\right)}$

Problem 4 (25 pts)

For each of the following functions, give the indicated information for each singularity in the complex plane:
i. Location of singularity
ii. Singularity type, e.g., pole (give order and residue), removable singularity, branch point, essential singularity, etc.
iii. Residue for any poles or essential singularities
a) $(z-1)^{2} e^{\frac{1}{z-1}}$
b) $\frac{\sin ^{2}(z-1)}{(z-1)^{2}}$
c) $\frac{z^{\frac{2}{3}}}{(z+1)}$
d) $\cot \pi z$

ROOM FOR EXTRA WORK

ROOM FOR EXTRA WORK

