Name: \qquad

Student Number:

ELEE 6382

Fall 2013

Oct. 21, 2013

MIDTERM EXAM

INSTRUCTIONS:

This exam is open-book (Arfken, Weber, Harris or approved substitute) and open-notes. You may also use your class notes. Please show all steps of your work and write neatly and legibly in order to receive full credit.

Please write all of your work on the attached sheets. If a problem continues onto the workspace pages at the end, please indicate this.

Useful identities and integrals :

$$
\begin{array}{ll}
\sin \left(z_{1} \pm z_{2}\right)=\sin z_{1} \cos z_{2} \pm \cos z_{1} \sin z_{2} & \int x \sin x d x=\sin x-x \cos x \\
\cos \left(z_{1} \pm z_{2}\right)=\cos z_{1} \cos z_{2} \mp \sin z_{1} \sin z_{2} & \int x \cos x d x=\cos x+x \sin x \\
\sinh \left(z_{1} \pm z_{2}\right)=\sinh z_{1} \cosh z_{2} \pm \cosh z_{1} \sinh z_{2} & \int x e^{x} d x=x e^{x}-e^{x} \\
\cosh \left(z_{1} \pm z_{2}\right)=\cosh z_{1} \cosh z_{2} \pm \sinh z_{1} \sinh z_{2} & \\
\sin i z=i \sinh z, \quad \cos i z=\cosh z & \\
\sinh i z=i \sin z, \quad \cosh i z=\cos z & \\
\cosh { }^{2} z-\sinh ^{2} z=1 \\
\frac{d}{d z} \sinh ^{d z}=\cosh z, \frac{d}{d z} \cosh z=\sinh z, &
\end{array}
$$

1. (25 pts) (Show all work!)

Expand $\frac{1}{z(z-1)(z-2)}$ in a Laurent series in the region $1<|z|<2$; also, sketch the region of convergence of the series.

2. (25 pts) (Show all work!)

Calculate the value of the following definite integral. Sketch any contours used, including their orientation, closures, and singularity locations, if any. Note there are two cases.
$\int_{-\infty}^{\infty} \frac{x \sin m x}{\left(x^{2}+1\right)\left(x^{2}-1\right)} d x=\operatorname{Im} \int_{-\infty}^{\infty} \frac{x e^{i m x}}{\left(x^{2}+1\right)\left(x^{2}-1\right)} d x ;$ Two cases : $m>0, m<0$
a. $\quad m>0$ case
b. $\quad m<0$ case

3. (25 pts) (Show all work!)

Calculate the value of the following two definite integrals ((a) and (b)). Sketch any contours used, including their orientation, closures, and singularity locations, if any, for each case.
a) $\int_{0}^{2 \pi} e^{e^{i \theta}} d \theta$
b) $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{4}+1\right)} \quad$ (It may be helpful to note that $\left.e^{ \pm i 3 \pi / 4}=-e^{\mp i \pi / 4}.\right)$

4. (25 pts) (Show all work!)

For each of the following functions (in (a), (b), and (c)) , give the following information for each singularity in the finite complex plane:
i. Location of singularity
ii. Singularity type: pole (specify order and residue), removable singularity, branch point (specify order), essential singularity (specify whether isolated or non-isolated),
iii. Residue for any poles or essential singularities
a) $z^{2} \sin \left(\frac{\pi}{z}\right)^{3}$
b) $\frac{z}{\sin Z}$
c) $\frac{z^{\frac{1}{3}}}{(z+27)}$

ROOM FOR EXTRA WORK

ROOM FOR EXTRA WORK

