

Final Exam
Spring 2009

Problem 2

A 75 [Ω] coaxial line used for TV has an outer radius of b = 0.25 [cm] and an inner radius of a = 0.039 [cm]. The coax is filled with Teflon (nonmagnetic, with $\varepsilon_r = 2.2$) that has a loss tangent of 0.001. The conductors are made of copper, which is nonmagnetic. The conductivity of copper is 3.0×10^7 [S/m]. Assume that the transmission line is operating at a UHF frequency of 500 [MHz].

- a) Calculate the parameters R, L, G, C for the line.
- b) Calculate the attenuation on the transmission line, in both nepers/m and dB/m.

Solution

$$C = \frac{2\pi\varepsilon_0\varepsilon_r}{\ln\left(\frac{b}{a}\right)} \quad [F/m]$$

$$L = \frac{1}{2\pi} \ln \left(\frac{b}{a} \right) \mu_0 \mu_r \quad [H/m]$$

$$G = (\omega C) \tan \delta_d [S/m]$$

$$R = \left(\frac{R_{sa}}{2\pi a} + \frac{R_{sb}}{2\pi b}\right) \left[\Omega/\mathrm{m}\right]$$

$$R_{sa} = \frac{1}{\sigma_{ma}\delta_a} = \sqrt{\frac{\omega\mu_a}{2\sigma_{ma}}}$$
$$R_{sb} = \frac{1}{\sigma_{mb}\delta_b} = \sqrt{\frac{\omega\mu_b}{2\sigma_{mb}}}$$

$$\mu_a = \mu_b = \mu_0$$

$$\delta_{a} = \sqrt{\frac{2}{\omega \mu_{ma} \sigma_{ma}}}$$

$$\delta_{b} = \sqrt{\frac{2}{\omega \mu_{mb} \sigma_{mb}}}$$

Part (a)

$$R = 3.827 [\Omega/m]$$

$$L = 3.716 \times 10^{-7} \text{ [H/m]}$$

$$G = 2.070 \times 10^{-4} \text{ [S/m]}$$

$$C = 6.588 \times 10^{-11} \text{ [F/m]}$$

Part (b)

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

 α = attenuation constant (np/m)

Attenuation (dB/m) = 8.686α

$$\gamma = 0.033243 + j15.543 [1/m]$$

$$\alpha = 0.033247$$
 [nepers/m]

Attenuation = 0.289 [dB/m]