

Blast From the Past!

Exam 1 Fall 2018

Problem 3 (35 pts.)

A coaxial cable transmission line has a characteristic impedance of 50 $[\Omega]$. The relative permittivity of the (nonmagnetic) Teflon filling the line is 2.1. It is found that a voltage minimum of 2.0 [V] occurs on the line at z = -5 [cm] and a voltage maximum of 4.0 [V] occurs on the line at z = -15 [cm]. (This voltage maximum is the one that is the closest to the voltage minimum.)

What is the unknown load impedance at z = 0?

Note: This is not supposed to be a Smith chart problem, so please do not use a Smith chart.

Blast From the Past!

Solution

For the phase of the load reflection coefficient ϕ , we have:

$$\Gamma_L = |\Gamma_L| e^{j\phi}$$

$$\phi + 2\beta z_{\min} = \pm \pi, \pm 3\pi, \dots$$

We have

SWR =
$$\frac{4.0}{2.0}$$
 = 2

$$\Rightarrow \phi + 2\left(\frac{2\pi}{\lambda_d}\right)z_{\min} = -\pi$$

(We can add any multiple of
$$2\pi$$
 to the final answer for ϕ .)

$$SWR = \frac{1 + |\Gamma_L|}{1 - |\Gamma_L|} \qquad \Longrightarrow \qquad |\Gamma_L| = \frac{SWR - 1}{SWR + 1}$$

$$z_{\min} = -5[\text{cm}]$$

$$\frac{\lambda_d}{4} = -5 \left[\text{cm} \right] - \left(-15 \right) \left[\text{cm} \right] = 10 \left[\text{cm} \right]$$
$$\lambda_d = 40 \left[\text{cm} \right]$$

$$|\Gamma_L| = \frac{1}{3}$$

Hence $\phi = -\pi/2$ [radians]

$$\Gamma_L = \frac{1}{3} e^{-j\pi/2} = -j/3$$

Blast From the Past!

We then have

$$Z_L = Z_0 \left(\frac{1 + \Gamma_L}{1 - \Gamma_L} \right)$$

SO

$$Z_{L} = 50 \left(\frac{1 + \left(-j/3 \right)}{1 - \left(-j/3 \right)} \right)$$

Therefore

$$Z_L = 40 - j30 \left[\Omega\right]$$