

Exam 1 Fall 2021

A voltage source is applied at the left end of a transmission line as shown below. The transmission line meets a second transmission line, which is then terminated by a load. At the junction between the two transmission lines a fault occurs, which is modeled by a parallel (shunt) resistor R_F .

A plot of the generator voltage $v_g(t)$ is shown below. The pulse peak is $V_0 = 8$ [V] and the width of the pulse is W = 3 [ns].

Plot the voltage v(t) measured by an oscilloscope that is connected to the first (left) line at a point halfway down the first line (halfway between the generator and the fault). Plot to a time of 10 [ns]. Use the graph on the next page to make your plot. Label all voltage values on your plot.

Line #1 sees a load of 50 $[\Omega]$ in parallel with 10 $[\Omega]$, which gives 8.333 $[\Omega]$.

Load seen by line #1

 $8.333 [\Omega]$ load

$$\Gamma_J^+ = \frac{8.333 - 50}{8.333 + 50} = -0.71429$$

$$\Gamma_g = 0$$

$$A = \frac{1}{2}$$

$$\begin{split} v(z,t) &= A v_g \left(t - z / c_d \right) \\ &+ \Gamma_J^+ A v_g \left(t - L / c_d - (L - z) / c_d \right) \\ &+ \Gamma_g \Gamma_J^+ A v_g \left(t - 2L / c_d - z / c_d \right) \\ &+ \Gamma_g \Gamma_J^{+2} A v_g \left(t - 3L / c_d - (L - z) / c_d \right) \\ &+ \dots \end{split}$$

Load seen by line #1

$$v(z,t) = 0.5v_g(t-2.0[nS])$$

$$+(-0.71429)(0.5)v_g(t-4.0[nS]-2.0[nS])$$

Plot of voltage

