

Final Exam Fall 2018

Problem 1 (20 pts.)

A Time Domain Reflectometer (TDR) is being used to determine a fault on a transmission line. The TDR has a voltage generator $v_g(t)$ that applies a voltage step function with an amplitude of $V_0 = 2.0$ [V] at the input to the transmission line circuit shown below. The transmission line has a relative permittivity of 2.1. The voltage waveform $v_0(t)$ that is recorded by the TDR at $z = 0$ is shown below. A partial short on the line (the fault) is modeled as a parallel resistance R_p as shown.

Determine the unknown resistance R_p and the distance d between the short and the TDR.

Support your answer by constructing a bounce diagram and using it to get the voltage $v_0(t)$ in terms of d and R_p .

1

Measured Waveform

 $(z = 0)$

$$
T_{\text{jump}} = 0.290 \text{ [}\mu\text{s}\text{]}
$$

$$
V_{\text{inc}} = 1.0 \text{ [V]}
$$

0.286 [V]
0.286 [V]
0.290 [µs]

 $d = 30.0$ [m] $\epsilon_{\text{jump}} = \frac{2d}{\epsilon_0} = \frac{2d}{\epsilon_0} = \frac{2d}{\epsilon_0} = d\left(\frac{2}{3}\sqrt{\epsilon_r}\right) = d\left(9.6676 \times 10^{-9}\right)$ $\int_{d}^{d} c/\sqrt{\varepsilon_r}$ ^{-*a*} $c/\sqrt{c_r}$ $T_{\text{jump}} = \frac{2d}{d} = \frac{2d}{d} = \frac{2d}{d} = d\left(\frac{2}{4}\sqrt{\varepsilon_r}\right) = d$ $\frac{c}{c_d} = \frac{c}{\sqrt{\varepsilon_r}} = a \left(\frac{-\sqrt{\varepsilon_r}}{c} \right)$ $=\frac{2d}{c_d}=\frac{2d}{c/\sqrt{\varepsilon_r}}=d\left(\frac{2}{c}\sqrt{\varepsilon_r}\,\right)=d\left(9.6676\times10^{-9}\right)$ (solve for *d*)

 $T_{\text{jump}} = 0.290 [\mu s]$ $v_0(t)$ 1.0 [V] 0.286 [V] $V_{\text{inc}} = V^+ = 1.0$ [V] (See next slide for bounce diagram.) $(V_{\text{inc}})(1.0+\Gamma_J^+)=0.286$ 0.290 [μs] $\Gamma_I^+ = \frac{(50 \parallel R_p) - (50 \parallel R_p)}{2}$ $50 \parallel R_{n}$) – 50 *R* $(50 \parallel R_{_p})$ \parallel $(1.0) (1.0 + \Gamma_J^+) = 0.286$ *p* $\left(\frac{50R_p}{50+R_p}\right) - 50$
 $\left(\frac{50R_p}{50+R_p}\right) + 50$ 50 *R J* + $50 \parallel R_{n}$ + 50 \parallel *R* $(50 \parallel R_{_p})$ *p* 50 *p* 50 *R* J, (solve for R_p) *p* $R_p^{}$ = 10 $\left[\Omega\right]$ 7.14 50 *R* 50 *R p* $\Gamma_J^+ = -0.714$ 50 *p* $R_p = \frac{3.04R_p}{50+R}$ 50 $(50 + R_p)$ 50 *p* 50 *p p* $R_g = 50 [\Omega]$ $\varepsilon_r = 2.1$ $Z_{\text{o}}=50\left[\Omega\right]$ $Z_{\text{o}}=50\left[\Omega\right]$ $v_{g}(t)$ $Z_L=50\left[\Omega\right]$ R_p $\emph{z}=0$ $z = d$ $z = L$

(We don't have to worry about the transmitted wave (there is no reflection from the load).

z

